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FOREWORD

The Multisatellite Filter/Smoother system of computer programs was
developed by the Space and Surface Systems Division of NSWC in support of the
Defense Mapping Agency various geodetic applications of GPS and the Navy's
Strategic Systems Program Office/Applied Physics Laboratory SATRACK project.
The principal software developers were D. Clark, K. Davis, E. Durling, M. Eward,
and H. Ball as members of the Physical Sciences Software Branch. This software is
part of the new OMNIS orbit computation system under development. I am grateful
to MCSI and, especially, Susan Bowen for helping in the production of this report.
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INTRODUCTION

The Global Positioning System (GPS) is a passive, all-weather, worldwide navi-
gation system that utilizes ultrastable atomic frequency standards to provide navi-
gation messages and signals of the required accuracies. The Space and Surface
Systems Division of NSWC has been tasked by the Defense Mapping Agency and the
Navy's Strategic Systems Program Office to develop estimation techniques for
highly accurate ephemeris and clock determination (aftei -the-fact) for geodetic and
the SATRACK applications, respectively. For geodetic applications, such as point
positioning and satellite-to-satellite tracking involving GPS, the user is interested
in accurate ephemeris and clock information at all times and with minimal disconti-
nuities. For the SATRACK application (missile tracking primarily during powered
flight), the user (Applied Physics Laboratory/Johns Hopkins University) is inter-
ested in this information over a particular geographical area for a short time span.
The goal of this development effort was to produce common software that has the
flexibility to optimize the orbit and clock estimates as required and generates the
required products for these two primary applications. In addition, this software was
tohave extensive diagnostics and be easily reconfigured and/or modified to be used
as a research and development tool for accuracy evaluations and other studies.

The result of this development effort is called the GPS Multisatellite Filter/
Smoother (MSF/S) system of programs. Smoothed range, correlated range differ-
ence, and two interferometric-type derived observations based on simultaneous
range observations can be processed. A Kalman filter followed by a smoother was
chosen as the estimation technique for severan reasons. The unmodeled acceler-
ations acting on the satellites (due to modeling deficiences in the gravity field,
radiation pressure, and thermal radiation models, as well as control system induced
effects) and the random behavior of atomic clocks are best handled by stochastic
estimation techniques, i.e., Kalman filtering. Fixed-interval smoothing can be
accomplished because processing is after-the-fact; thus, estimates at a given time
can be based on both past and future data. A square root information filter/smoother
(SRIF/SRIS) formulation utilizing matrix triangularization techniques was selected
for this system primarily because of its numerical accuracy and stability. In addi-
tion, this smoothing procedure requires that only inverses of upper triangular
matrices be computed, as opposed to inverses of full matrices-as is the case for most
covariance-related smoother implementations. A~so, if smoothed covariance infor-
mation is not required, the upper triangular matrix to be inverted is only for a subset
of the parametei s in the selected implementation. These ideas will be expanded
upon in subsequent sections.

The multisatellite capability was adopted because it is the optimum way to
separate the satellite clock offsets (of interest to users) and the station clock offsets
(o no interest to users). This is because of the simultaneous tracking of a givea sat-
ellite by two or more stations in conjunction with simultaneous tracking of several
satellites by each station. Intersatellite orbit and clock covariances are required for
the SATRACK project and are only available with simultaneous processing. Also,
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this allows the system of programs to accommodate doubly-diflerenced data types in-
volving two satellites and to eventually be expanded to accommodate the proposed
cross-link ranging (satellite-to-satellite tracking) data. In addition, the adoption of a
multisatellite capability affected the formulation of the Kalman filter process noise
incorporation dealing with minimizing array storage requirements, to maximize the
number of satellites that can be processed simultaneously.

The purpose of this report is to provide the assumptions and mathematical
details for the GPS MSF/S system of programs. First, the overall GPS data flow is
given to introduce the reader to the preliminary computations required before exe-
cuting the MSF/S. Then, the estimation concepts employed are discussed; followed
by the timeline definitions; and a detailed description of the adopted state equations,
underlying models, and resulting process noise covariance matrices required by the
Filter. Next, the observation equations and the corresponding partial derivatives of
the data with respect to the parameter set are given. Then, the overall Filter/
Smoother processing flow is provided to establish the groundwork for the detailed
descriptions of the filtering and smoothing algorithms, the generation of the solution
and diagnostics, and the propagation of trajectories. Derivations and other relevant
technical details are supplied in the appendices to enhance understanding the main
text.

GIDS DATA FLOW

The possible observations are pseudorange and range difference derived from
integrated Doppler or phase measurements. Preprocessing of observations may be
required for various reasons. Smoothing of pseudorange measurements, accununu-
lation and differencing of integrated Doppler over longer intervals, elimination of
duplicate datw, and assignment of observation standard deviations and pass num-
bers may be required. The pass-oriented data must be merged into a time-ordered
format, and time-ordered data irn one format must be converted into another format.
Data from various sources must be merged for the time span of interest. The MSF/S
format c-ntalns the following information for each observation: time of observation,
observation value, standard deviation(s), editing flag, data type, integration interval
for range difference data, station number, satellite number, channel or trucker num-
ber, pass number, source of weather data, as well as temperature, pressure, and
relative humidity in order to make the tropospheric refraction correction. Figure 1
gives a simplified flow of the GPS data after the observations have been pre-
processed.

Reference trajectories covering the span of interest are required for both the
Corrector/Editor and MSF/S systems of programs. These trajectories are integrated
either in GPS or UTC time using initial conditions from a previous fit or obtained
from the GPS Operational Control System. For the Corrector/Editor system in its
normal mode of operation, the only information required from the trajectories is
inertial position and velocity (obtained by numerical differentiation) as a function of
time and polar motion. However, f(,tr the MSF/S system the reference trajectories
and the corresponding Lagrangian interpolation procedures provide the following
additional information:
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FIGURE I. GPS DATA FLOW

1. Homogeneous variational equa,1ion solution for the epoch orbital elements,
i.e., partials of current time positken and velocity with respect to epoch or-
bital elements needed to relate changes at epoch to all other times. (The
gravity field model on which the filtering isbased is thus determined by
the integrator along with the inertial reference frame.)

2. Initial values for the radiation pressure model parameters and the body-
axis-to-inertial rotation matrix and body-axis radiation pressure accelera-
tions at the required times. (These quantities are required for the compu-
tation of certain partial derivatives associated with solving for stochastic
radiation pressure parameters and permit evaluation of the complex radia-
tion pressure force model only during the integration procedure.)

3. Partial derivatives required to solve for nonstochastic radiation pressure
parameters, thrusts, polar motion, and gravity field model coefficients.

The nain requirement on the reference trajectories is that they are within the
linear region of convergence relative to the true trajectory, since a linearized (not
extended) Kalman filter has been adopted. However, if a reference trajectory is not
within the linear region the Filter can be used in a batch emulation mode to obtain
an improved set of initial conditions for reintegration. Reference I contains a de-
tailed description of the reference trajectory integration procedures and the associ-
ated force models.

The Corrector/Editor system of programs has two purposes. The first purpose is
to correct the data tW instantancous geometric range (or railge difference), plus clock
offsets, measurement noise, and residual unmodeled and random effects. This is
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accomplished by adjusting the measurements to account for time transmission
effects, the effect of the displacement of the antenna system's electrical phase center
from the satellite's center of gravity, tropospheric refraction effects the periodic
component of the relativistic effect on the satellite cloAk, and the solid earth tide
effect on the station height. Range and range difference data can be processed by this
system of programs with corrections appropriate to each type and source of data
made. The second purpose is to edit the data. The Editor does polynomial fits to
residuals, formed by differencing a computed value based on the reference trajectory
and nominal clock information with the corrected observed value. Consistency
checks of the after-fit residuals are used to identify bad points. By-products of this
editing procedure are estimates of the nominal clocks for each satellite and station,
as well as the time of occurrence and approximate magnitude of any time or fre-
quency j ump events that may be observed in the residuals. Reference 2 contains a
detailed description of the Corrector/Editor system of programs.

Once the range data has been corrected and edited, another program can be
used to search for simultaneous observations and form the derived interferometric
data types--differenced range and doubly-differenced range. Differenced range is
obtained by differencing ranges from two stations to the same satellite. This elimi-
nates the satellite clock from the observations. Doubly-differenced range is obtained
by differencing two differenced ranges involving the same pair of stations but differ-
ent satellites. This also eliminates the station clocks from the observations.

In addition to the reference trajectories, edited observations (including obser-
vation sigmas and station coordinates), and nominal clock information (including
events and offsets between the master or reference clock and GPS time), the MSF/S
system of programs requires various inputs including: overall program flow and
identifying information, quantities defining time spans for the fit and each data
type, lists of satellites and stations to be processed, data deletion criteria, minimum
observation sigmas for each data type, the parameter set and a priori statistics, and
information for SATRACK processing if required. Output products of the MSF/S
system of programs include: propagated trajectories, satellite clock offsets from GPS
time (both time and frequency), improved initial conditions to initiate follow-on
processing, plots of corrections and their corresponding sigmas, residual and signal-
to-noise plots, correlation coefficient matrices, SATRACK intersatellite and inter-
time covariance matrices, updated station coordinates, and updated polar motion
information.

ESTIMATION CONCEPTS

The GPS MSF/S estimation procedure can be viewed as an adjustment of a
model to best fit, in a minimum mean-squared error sense, the available observa-
tions which are a function of that model. The possible observations are range, range
difference, differenced range, and doubly-differenced rsnge--all involving tracking of
the satellites by stations on the surface of the Earth, The model consists of a trajec-
tory model, clock models for both the satellite and station clocks, and various other
parameters related to the measurements.

Since the ordinary differential equations describing a satellite trajectory are
nonlinear and the Kalman filter equations assume a linear state model (and a linear
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measurement model), a linearization about a reference trajectory must be per-formed. In addition, since atomic clocks sometimes exhibit anomalous step changes
in time and/or frequency or may be adjusted deliberately, a nominal clockincluding
approximate values for all step changes is also required, so the stochastic clock
models do not have to accomodate large jumps. Linearization means that the states
of the Kalman filter are actually corrections to the nominal model parameters and
that the measurements are processed as residuals. Therefore, partial derivatives are
required that relate the states at one time to another time (state transition matrices)
and that relate the measurements to the states (measurement matrices). All partial
derivatives are evaluated based on the reference trajectory and the nominal param-
eter values. There is no relinearization of the measurement model relative to the
estimated states. Th, A notation is used throughout this report to indicate that
corrections to nominal model parameters are actually being estimated.

It is important to realize that a Kalman filter is a combination of a parameter
estimation technique and a set of equations that define how the state and its associ-
ated covariance at one moment in time, tj, are related to the same quantities at
another time, ti+ 1. The general form of the stochastic state equations (in discrete
terms) is given by:

'&J+I = 4JAz, + Gw, (1)

where Azj = state at tj

IýJ = .t/tj+,, tj) = nonsingular transition matrix relating the state at tj tote state at tj+ I
wj = vector of white process noise terms with nonsingular covariance

matrix Qj, dim w < dim Ax

and G = matrix of cnes and zeroes required to make dim G. = dim Ax.

This general form is assumed when describing the processing steps in a standard
Kalman filter. The specialized form of the state equations adopted in the MSF/S
system, their underlying models, and the corresponding Q matrices are described in
the STATE EQUATIONS section.

The discrete form of the linear measurement model is given by:

zj = Aj/Axj-+vj (2)

where z, = measurement vector at tj

A = = measurement matrix at tj

and vj = measurement noise vector at tj.

It is assumed that the observations have been whitened and decorrelated, so the
measurement noise covariance matrix is the identity matrix, i.e. P0 = I. It is also
assumed that the process noise, w, and measurement noise, vj, are uncorrelated and
that the state estimate, Aaxo, and its associated covariance matrix, Po, are given at to.
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Smoothing

Propagation

Measurement Update

I V I 1IA..
I I A I J "

to tj ti+l

{tj) = mini-batch times (] = mini-batch intervals At=tj+l-tj

FIGURE 2. SIMPI.IFIKI) TI MEL.INE I)KIFINrIrION

Figure 2 gives a simplified timeline definition. A complete timeline definition
is given in the next section. For a standard linear Kalman filter the processing
starts by initialization of the state and its associated covariance matrix at to, the
epoch of the fit span, and steps forward in time. Assume for illustration purposes
that observations only occur at the times 4 tj }. In the following equations - indicates a
pi edicted quantity, ' indicates a filtered quantity and indicates a smoothed
quantity.A measurement update is done at tj by forming the predicted residuals and
their covariance matrix, computing the gain matrix Kg, and using these quantities
along with the measurement and measurement matrix to update the estimates of the
state and the covariance matrix.

Sz, = S,+ K,(zj- Ajz) (3)

S= (1-KjAj)Pj (4)

where Kj = Pj Aj(AjP, Aj+ 1%" (5)

zj- AjAj is the predicted residual vector and

AjPj AjT+I is the predicted residual covariance matrix.

The next step is to propagate the state and the covariance matrix to time z,+ . The
state propagation uses the state transition n.atrix 4ij and assumes that the process
noise term wj is zero. The covariance matrix is propagated by doing a deterministic
mapping using the ý, matrix and then adding in Qj, the state or process noise covar-
iance matrix. This Qj matrix is the only difference between a Kalman filter and a
sequentially implemented batch weighted least squares estimator.

S- ,(6)

P = + JPiJC C - G,: (7)
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The measuremient update/propagate pair of operations is continued until a measure-
ment update has been done at tN.

Smoothing is then accomplished by recursively computing state an% covariance
estimates backwards, one step at a time, using the Rauch-Tung-Striebel (RTS) equa-
tions. Smoothed state estimates at tj are the filter estimates, plus a smoother gain
matrix multiplied times the difference of the smoothed and predicted states at tj+ ,.
The gain matrix is a function of the filtered covariance estimate at tj, the predicted
covariance estimate at tj+ 1, and the state transition matrix c,. The smoothed
covariance estimate is the filtered estimate, plus a term that is a function of the
difference of smcothed and predicted covariance estoimates at tj+1 and the gain
matrix Cj.

AXJ' = Ax + Cj(A XJ'+; - Ax>,+ (8)

P] = Pk + C( PJ+, - P +,) C/ (9)

where Ci = Ai 4)i+, (10)

This recursive process is continued until to is reached. Reference 3 contains an
excellent introduction to linear Kalman filtering and smoothing.

Kalman filters can easily be restarted at any time in the middle of the fit span.
Assuming that the filter was previously stopped after p. -- agation from te. to te,
restarting the filter simply consists of initializing the st. and covariance matrix
estimates with their predicted values at te and then doing a measurement update at
te. This procedure has been adopted in the MSF/S system.

In the case of GPS it is necessary to use the mini-batch concept, because not all
observations lie exactly at the tj times and reducing the number of steps required
increases the efficiency of the computations. In the mini-batch concept all observa-

tions in the interval ( t - tj + t1 are processed in a batch mode. This

assumes that the process noise contribution to state uncertainties can be ignored
over much shorter periods than the time constants of the stochastic processes. This
means that the state noise covariance matrix 9j is only added into the covariance
matrix estimate when propagating from tJ to t.+ This essentially averages out the
random effects over the interval chosen, whidA primarily affects the clock estimates
for the intervals used for GPS (5 1 hr). Another effect is that solutions are only
available at the mini-batch steps. However, that part of the state equations
involving orbit-related parameters waF chosen so that deterministic propagation of
the trajectory corrections between tj and tj + is exact.

This approach also allows the mini-batch step to be changed in the middle of
the fit span. This technique was adopted for the SATRACK application of the MSF/S
system. Since this application requires optimum and dense estimates only during a
subspan of the entire fit span, a reduced mini-batch step size span is defined. The
concepts given above apply, except At is reduced to a smaller value. The transition
regions are handled to ensure no observation is processed twice. This technique is
also useful for looking in detail at a particular time span to locate precisely when an
anomibly occurred.

7
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The square root information implementation of the estimation equations was
selected for the MSF/S system. This implementation is mathematically equivalent
to the classical Kalman fi)ter/RTS smoother approach. A square root implementa-
tion was selected because of its characteristic accuracy and stability. Accuracy
involves susceptibility to roundoff errors; stability involves accumulated roundoff
errors not causing the algorithm to div-erge. These are common problems when
using the classical Kalman filter equations with large parameter and observation
sets. The information form (synonymous with normal equations and opposite to the
covariance form) was selected because: primary interest is in the smoothed results
(in this implementation, filter state and covariance estimates never need to be
computed); the smoother equations require the inverse of only an upper triangular
matrix (of reduced size if covariance information is not required), instead of a full
matrix (as in the RTS formulation); and the observations are assumed to already be
edited. Editing can be done in a Kalman filter by comparing the predicted residual
to the square root of its variance. However, these quantities are never computed
explicitly in the information form. In fact, no predicted states and covariances are
normally computed in th.is implementation.

The square root information filter/smoother (SRIF/S) is based on the equivalent

concepts of a data equation and an information array as follows:

Data equation r- Information array

z = RAx+v (R z) (11)

where Ax = states to be estimated

R = nonsingular square matrix

v = zero-mean noise with unity (identity matrix) covariance

z = right-hand side of linear equations

Every data equation corresponds to an estimated state(Ax)-covariance (P) pair, i.e.,

Ax = R'z and P = R"RT (12)

The information matrix (normal matrix) is P'ý= RTR. Therefore, RT is the square root
of the information matrix--the origin of the name of this implementation. Data
equations are not unique because if T is an orthogonal matrix

Tz = TRAx + Tv (13)

where Tv has unity covariance and

Ax = TR'Tz R••T'z = Rz (14)

8.
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Therefore, the transformed equations have the unity covariance noise term and the
same solution. These results can be extend =i to the case where R has been augmen-
ted by additional rows representing new observations. In the SRIF/S method, House-
holder orthogonal transformations are used to partially or totally triangularize
certain information arrays. Solutions, therefore, are always computed from an
upper triangular set of linear equations. The Householder transformations are not
computed explicitly, only the results of applying the transformations are needed.
The details of applying these transformations are given in the FILTER ALGO-
RITHM section. An excellent description of the square root information concepts
and properties of the Householder transformations, on which the MSF/S
development was based, is in Reference 4.

The parameter set selected for the MSF/S system can be divided into three
categories:

1. Stochastic parameters (labelled p parameters)
a. Orbit-related
b. Measurement-related

2. Time-varying but nonstochastic parameters (labelled x parameters)

3. Bias parameters (labelled y parameters)
a. Station-related
b. Orbit-related

All parameters are arc parameters, i.e., there are no pass parameters. This grouping
results in some simplification of the SRIF/S algorithms. Since all p parameters must
be present twice in the propagation and array smoothing step arrays, not allowing
all parameters to be stochastic results in smaller arrays. Also, the y parameters can
be treated somewhat separately, resulting in additional array storage reduction. In
addition, the Q matrix is only required for the p parameters.

Both the orbital element states and the clock states are treated as pseudoepoch
state parameters. This means they are epoch state corrections that would have
occurred had the process noise been zero. These can then be readily mapped to cur-
rent state, using the standard state transition matrices. This definition was prima-
rily adopted for two reasons: (1) to use the partial derivatives of position and velocity
with respect to orbital elements generated in the integrator, as they would be used in
a standard batch fit when forming the measurement matrices and (2) to reduce the
clock model to a polynominal in time, with the fit epoch as the reference point if its
process noise terms were zero. This simplifies the state equations and keeps the
observation equations identical to those used for batch least squares.

Another concept employed in the MSF/S system development was to solve for a
given parameter set using one set of observations, and then, use these solutions in
processing another set of observations. The two specific parameter sets chosen were
the orbit-related parameters and the satellite clock parameters. The orbit solution
can be incorporated by using the propagated trajectories from a previous fit and not
solving for any orbit-relatedparameters. The satellite clock solutions can be incor-
porated by using the total satellite clock offsets from a previous fit and not solving
for satellite clock parameters. These two methods used together would allow sta-
tions, for which observations may or may not have been included in the previous fit,
to be positioned with fixed orbits and satellite clocks as an evaluation procedure.

9
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TIMELINE DEFINITIONS

Figure 3 gives a detailed diagram of the relationships of all the time-related
quantities to be referred to in the rest of this report. All times are either GPS or UTC
times.

To t' to tj tj+1

At AtRed.

'", ' ' ' ' ' ?tN

AT Red. T1  T 2  T 3  teT

FIGURE 3. DETAILED TIMELINE DEFINITION

to = start time of fit span

tN = end time of fit span must be trajectory timelines

{t,} = mini-batch times

At = tj+l -tj= mini-batch time step (integer multiple of trajectory
time step)

(] = mini-batch measurement limits

To = trajectory epoch (may be different for each satellite), Tosto

TE = end time .,f trajectory, TEvtN

AT = trajectory time step

= clock epoch (may be different for each satellite and each station
and may be before or after to)

tsRed" = start time of reduced mini-batch step span (primarily for
SATRACK), tsRed" = to + integer x 9t

tERed_ = end time of reduced mini-batch step span,
tERed. = tSRed" + integer x At

AtRod- = reduced mini-batch time step,
Atled := At / integer, AtRed = integer x AT

{Tj= 2. = times for SATRACK covariance information

10
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In addition each data type can be processed over a subspan of the fit span with the
default being the entire fit span.

STATE EQUATIONS

The stochastic state equations in discrete form define the relationship between
the states at tj and tj+ 1; i.e., the solutions that are determined by the Filter or
Smoother must satisfy these equations. The general form of these equations was
given in equation (1) in the ESTIMATION CONCEPTS section. A specialized
form of these equations was selected for the MSF/S system to ensure efficient
handling of the multisatellite capability and maximum utilization of available
partial derivatives and other pre-computed quantities from the integrator. These
equations are given by:

Ax = p 1 0 A( + (15)

AY) (0 0 1/) (AY) 0
j+!

where p, x, and y refer to categories of parameters.

Ap = stochastic parameter states-only states being driven by white noise

Ax = time-varying but nonstochastic parameter states

Ay = bias parameter states

w= = white noise vector with covariance matrix Qj.

The matrix involving M, Vp, and the two identity matrices is the state transition
matrix. The M matrix relates the p parameter states at tj to tj + 1. The VP' matrix
relates the p parameter states at tj to the x parameter states at tj+ ,. The p param-
eters are divided into two subcategories--orbit-related and measurement-related.
The orbit-related p parameters are radiation pressure (KR) and gravitational accele-
rations (G). The measurement-related p parameters are tropospheric refraction (CR),
satellite clock (Csv), and station clock (CMs). The only x parameters are the pseudo-
epoch orbital elements (e). In addition, the y parameters are divided into two
subcategories also--station-related and orbit-related. The only station-related y
parameters are station coordinates (S). The orbit-related y parameters are radiation
pressure (RP), thrust (T), poib, *notion (PM), and gravity coefficients (GC). Polar
motion is under the orbit-related category, instead of the station-related category,
because the partial derivatives of satellite position with respect to polar motion can
be nonzero. Parameters are present for either all satellites or all stations, depending
on the specific parameter, except for thrusts that are only present for the appropriate
satellites and polar motion and gravity coefficients, which are common to all satel-
lites and are present once. Appendix A describes the assumptions and definitions
made in adopting the specialized form of the state equations for the orbit-related
parameters.

11
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The state transition matrix M in equation (15) has the following block diagonal
structure:

:M jNSv:

• II I I a

-------------- ----------

--- --- -- -- I-- I--- -• - - ------- ----------

I I 0

0KR, .0 0 00 A,,C

I I
-- - --- - - - - - : -- - --- - - 4 - - -- - - - - - - --- - -

I SII

~c,0 __

where Nsv number of satellites and Nms number of stations.

12
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The V•matrix is also sparse and has the following structure, where each • submatrix
is of dimension 6X×3:

* ~ I

I I II

I I
I I
I I

I I

a a a

vp 0 ~l0 :(17)

......---- 4- *--.-4-4----..

a I
I a

I a
a a
a a

a 13



NSWC TR 87-187

The Q matrix corresponding to the p parameters is also sparse and has the following
block diagonal structure:

-r----- I o 0 a
QK, U

- 4 I
-V V , U U

a
I I a

I _ a I g

0~ .4 0
---- ---- -------- ---- ---- ---- ---------- ----------

-- -------- 4------------ --------- 4----- ---------- 4- -- --4- - -- - -

- - - ---------

0 0 ark

t o e in e of te Q m x R, (18)

The p-----il b . It i I I
- - -param e..... ............. assum ed--- a nd a ai o the ... a. of M , .4 . .

a d s aa, Qcs , n0

144

I -------------------------- --- '-----. - ---------

S0 a 0d' ' 0 0 A ,..s,,

The Filter algorithm does not directly use the Q matrix; but rather, uses the square
root of the inverse of the Q matrix Rw, i.e., Q = R, R=. Rw has the same block
diagonal structure as Q except that each block is upper triangular.

The parameters are detailed below. It is assumed that the values solved for are
corrections to the nominal values for all parameters. Included in the description of
each parameter are the models assumed and a definition of the submatrices of Pd, Vp,,
and Q, if applicable. Also, units are given for each parameter. The x parameterd are
described first, so the submatrices of V, can be defined for the p parameters as they
are described. Several expressions involve At and must be re-evaluated for the
reduced mini-batch span processing.

14
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TIME-VARYING NONSTOCHASTIC STATES

The only r parameters are the pseudoe poch orbital elements at the trajectory
epoch represented bya. Each trajectory can have a different epoch; as long as it is
before the fit epoch. These orbital elements are defined as follows:

a = semi-major axis (km)

e sin ca = eccentricity X sine (argument of perigee) (unitless)

e cos w = eccentricity X cosine (argument of perigee) (utnitless)

I = inclination (radians)

M + w = mean anomaly + argument of perigee (radians)

Q = right ascension of the ascending node (radians).

The inertial position ro and velocity i(, can alternatively be the z parameters, if
partials with respect to these parameters are on the trajectory for any given satellite.
The MSF/S system of programs is designed so that it does not matter which of these
two parameter sets is chosen for a given satellite. Throughout the rest of this report
o will be used to signify either set of orbit parameters. No direct process noise is
included on the e parameters, nevertheless, they are smoothable as a result of being
dynamically related (tirough the V, matrix) to the KR and G parameters, which are
stochastic. Because of the pseudoepoch state formulation of the state equations (see
Appendix A), the state transition matrix for these states is the identity matrix.

STOCHASTIC STATES

As mentioned above, the p parameters can be divided into two subcategories--
orbit-related and measurement-related. Since all x parameters are orbit param-
eters, ordering the orbit-related p parametecs first results in the Vp matrix being of
the form given in equation (17).

Orbit-Related Stochastic States

Radiation Pressure

The 3 radiation pressure parameters, Ks, are

KR/ radiation pressure scale (unitless, .01 -- constant acceleration
of 10-12 km/sec2 in satellite-sun direction)

KR' - y-axis acceleration (1012 km/seC2 )

KR3  angle between satellite x and y axes (radians, usually constrained
to 90 deg since i -is not easily observed).

15



NSWC TR 87-187

Nominal values for these parametrs are those used in the integrator. The time
history of the corrections to each of these parameters is modeled as a current state
first-order Gauss-Markov process (see Appendix B). This results in the 3 X 3 portion
of the state transition matrix M being given by

At
OtK= 0 0

At
00 * 0 (1")

At
0 0

At
where ea-TK, reduces to I for X.K = , i.e., for a random walk process or bias. The
process noise covariance matrix ror these states is a diagonal matrix with each
element given by

I 2At
q.= q K t1  , K -, • ) i =1, 2, 3 (20)

where = spectral density of the white noise term = Ro Y, and a K isthe

steady-state sigma of the process. These sigmas have the same units as the param-
eters. Each diagonal of the R, matrix for these states is the square root of the
inverse of each diagonal of the QK matrix. For a random walk process the spectral
density must be directly input. Tiis element of the process noise covariance matrix
expression 'educes to q !,. At for a random walk process and 0 for a bias, in which case
the diagonal of R. is set to a computational infinity. The 6X3 portion f the V.
matrix corresponding to KR is given by

/ 3r (t,+)

S= '(tj+,) Kr(tj,) (21)

MIK; (t1))

where it, (tj+ 1) - partials of position and velocity at time t.+ z with respect to epoch
orbital elements obtained by interpolation from the trajectory.

Approximations using second order TayLor series expansions are used to obtain the
partials of position and velocity at t:'me tj, 1 with respect to radiation pressure
parameters at tp. (This Ppproximaticn is discussed in Appendix C.) These partials
are given by

a (t _ At2  8F(t) (22)
. A+-(t-) - -d- (23)

aý --i1) At at(t ) At 2 aF (t) (23)
MR (t+i 2 MKR(t) KR

16
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0 0

where BKR = 0 0 (24)

0 01

= 0 for a random walk or bias

a, -K 2I)0 "shape cos KR3 10c: shape cos KR3 -KRO,10' shape sin KR1

Ks,
aV(tj)
8 (ty 0 10"" shape sin KRI KRIsO` shape cos KR, (25)

0 0

a = inertial acceleration at t, due to radiation pressure in the body-axes
directions obtained from the trajectory

R, = matrix required to transform between the body-axis and inertial

Cartesian reference systems obtained from the trajectory at tj

K8 = nominal radiation pressure parameter values from the trajectory

shape = fraction of the sun's disk unobstructed by any eclipsing body (Earth,
Moon, or both) obtained from the trajectory at tj

The effects of changes in * on KR are ignored because they are negligible. KR parame-
ters cannot be present without * parameters. The partials of radiationpressure
acceleration with respect to KR will be 0 if tj lies in the umbra region of the eclipse,
even though some observations in the corresponding mini-batch interval may lie
outside of the eclipse period. This form of mismodeling is not a problem when using
these parameters in their intended stochastic manner.

Gravitadonal Accelerations

The 3 gravitatioL al acceleration parameters, G, are the radial, along-track, and
cross-track (RAC) accelerations in km.sec2. They are called this because the primary
error they are meant to absorb is gravity field model error. These parameters are
sometimes referred to as unmodeled accelerations. The nominal value of each of
these parameters is assumed to be zero. The time history of the corrections to each of
these parameters is modeled as a current state first-order Gauss-Markov process (see
Appendix B). This results in the 3 X 3 portion of the state transition matrix M being
given by

17
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Az

0 0

A4 = 0 6-At (26)

0 0 *-

At

where e - i reduces to 1 for •t = ®, i.e., for a random walk process or bias. Th-
process noise covariance matrix for these states is a diagonal matrix with each
element given by

tO (t
QG=q 0 , =- • q-- -. i = 1,2,3 (27)

where q, = spectral density of the white noise term - c-o, andOG is the steady-
XG,

state sigma of the process. These sigmas have the same units as the parameters.
Each diagonal of the R. matrix for these states is the square root of the inverse of
each diagonal of the Qo matrix. For a random walk process the spectral density must
be direct input. The process noise covariance matrix expression reduces to qG At
for a random walk process and 0 for a bias, in which case the diagonal of R. is set to a
computational infinity. The 6 X 3 portion of the Vp matrix corresponding to C is given
by

= *~(~+,/(at(t,+\

O =*(tj+,) (28)

where 4, (ti+,) = partials of position and velocity at time tj,+ with respect to epoch
orbital elements obtained by interpolating off the trajectory.

Approximations using second order Taylor series expansions are used to obtain the
partials of position and velocity at time t! +, with respect to gravitational accelera-
tion parameters at tj. (This approximation is discussed in Appendix C.) These
partials are given by

a,,(tJ+A) at 2 ai (tJ): (29)
ac (t) 2 aC(t)

-A -+ - (30)
aG(tj) ac(t) 2 adG(t()

18
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0 0
where B (31)

* \0 0)

0 0 - J

= 0 for a random walk or bias

(~j ý PX > (32)

= matrix required to transform between the RAC and
inertial Cartesian reference frames at tj, where A

denotes a unit vector
The effects of changes in e on G are ignored because they are negligible. G
parameters cannot be present without e parameters.

Measurement-Related Stochastic States

TroDospheric Refraction

The tropospheric refraction parameter, CR, is the zenith tropospheric refraction
parameter in km.. The correction to this parameter is related to other elevations by
a factor of 1/31n E. The time history of the correction to this parameter is modeled as
a current state first-order Gauss-Markov process (see Appendix B). This resulta in
the lX 1 portion of the state transition matrix M being given by

At
MCj, T c"- (33)

At
where e - iR reduces to 1 for xc = 0, i.e., for a random walk process or bias. The
process noise covariance matrixtfor this state consists of a single element given by

~- = . ,- ,Cic& (34)/ 2A

where qc, = spectral density of the white noise term = -2 o'c, and oc. is the
I.•R

steady-state sigma of the process. This sigma has the same unit as the parameter.
The R, matrix -or this state is the square root of the inverse of Qc.. For a random
walk process the spectral density must be directly input. The process noise covari-
ance matrix expression reduces to qc.At for a random walk process and 0 for a bias,
in which case R, is set to a computational infinity.
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Satellita and Station Clocks

The clock models for the satellite and station clocks are given below.
Appendix D discusses the models for the satellite and station clocks in more detail
than given here end describes the relationship between the clock model spectral
density noise terms and the Allan variance. The frequency offset term in these
models is not the instantaneous frequency offset, since it does not contain the white
frequency noise component. This component is only observable by its integrated
effect on the time offset, These clock models reduce to polynomials referenced to the
fit epoch when all the process noise terms are zero.

The satellite clock parameters, Csv, are

/,Wio frequency drift (ppm/sec)

Cv= Ag = frequency offset (ppm)

(ago%) (time offset (lisec)

The nominal values for these parameters are described in the next section and are
based on initial polynomials and step changes. The clock model is implemented in a
pseudoeloch state form which results in the portion of the state transition matrix
corresponding to these states being an identity matrix, i.e.,

Mc = 0 1 0 (35)
(0 0 1

The state noise covariance matrix for this set of states is given by

qjAt 1YQ1 -F-

At-, AtV AtA -e
4ýC= V M -y q)T -y+ q2At qM + @2 - .v=tC. ' C.,geSV (36)

Ate At 4  At' At' Ath
qj- q -f+ q2 - q, 7+ q-+ q3At

where Cosv= tj+ -to 1 0 (37)

2/
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(qJ =2 = white noise spectral density values in units of (ppm/sec)2 /sec,
(ppm)21/sec, and (psec)2 /sec; and +J.+I -to is in seconds.

The Filter actually requires g- = Q•v. 4cs,. To get this matrix Qcs, is factored into
RcSV R~c using lower triangular Cholesky decomposition (see Appendix E). Then,
Rey. 4c. is no longer upper triangular and must be upper triangularized before
being used in the propagation step for computational simplifications. If some of the
qi values are zero, special processing must be done to ensure that Qc3V is nonsingular.
If q * 0 and q2, q3 or both = 0, no change is necessary. Ifq, =- 0, Q, 1 is set to -V0. If q,
= q2 =.0, Q2 2 is setto z0.. IfiqI = q2 =_q3 = O, Q3.3 is set to ms0. If only processing
range difference data, each q3 is set to = 0. However, the a priori sigmas on the
parameters should not be set to L 0. Because the time offset state is basically the
integral of the frequency offset state, constraining the time offset also constrains the
frequency offset, which is not desired.

For certain clock everts the Qc~ matrix is changed for the mini-batch step
propagation that contains the event and then changed back to its original values.
This is used to account for the uncertainty in the clock event input offsets.
For a C-field adjust, Rý8 , replaces Rcs, where

bsv= QcSV (38)

and s =Qs-+°Q ý v = Q S -A ;c -rteld 0(3 9 )

(0 0 0

oAC.ield is input in parts in IQ1 and converted to ppm before use. Z-count adjusts are
assumed to be exact, so there is no process noise adjustment associated with this
event. For a clock reinitialization event, R" replaces RcsV ,where

S' 0 0

0 0 (40)

0 0

and each sigma is the a priori sigma used in the Filter initialization step. For a
frequency change event, R'SV replaces Rosy, where

R"@ = Qcsv (41)
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and Q111 = QcSv + (°( (402)CSV (42)
. 0 GA- f:2Afc/

where each input sigma is converted to the proper units before use.

The station clock parameters, CMS, are

a (A~• (frequency offset (ppm)
CMS = (~)

( A10  time offset (psec)

This model is identical to the satellite clock model, except the frequency drift state is
absent. The nominal values are also based on an initial polynomial and step
changes. The model is implemented in a pseudoepoch state form, which results in
the portion of state transition matrix corresponding to these states being an identity
matrix, i.e.,

MCMs -)

The state noise covariance matrix for this set of states is given by

At2

qlAt q1 -
2

Qous " . 'tCMS = 4¢Cs Qc~s 4CMs (44)

At 2  At3

q 1 - qM- + q2At
2 3

where = ( l o) (45)
tj+ t - to 1

{q,}, = white noise spectral densities in units of (ppm) 2/sec and (psec)2/sec; and
tj t +I -to is in seconds

-- 4
The Filter actually requires Q•. = QCs 4~cls. To get this matrix QCs is first

factored into Rc . RC using lower triangular Cholesky decomposition (see
Appendix E). TWen, rc. $4cMSis no longer upper triangular and must be upper
triangularized before being used in the propagation step for computational simpli-
fications. If some of the q, values are zero, special processing must be done to ensure
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that Qc, 8 is nonsinjular. If q, = 0, Q, I is set to -0. If in addition q2 = 0, Q2 is set to
S0. If only processing resnge difference data, each q2 is set to m 0. However, the
a riori sigmas on the parameters should not be set to w0. This is because the time
offset state is basically the integral of the frequency offset state. Constraining the
time offset also constrains the frequency offset, which is not desired. For the selected
master station the qj values are set to m 0.

For certain clock events, the Qc,8 matrix is changed for the mini-batch steppropagation that contains the event and then changed back to its oniginal values.
This is used to account for the uncertainty in the clock event input offsets. For a
clock reinitialization,Rb.8 replaces Rc.s, where1__ 0)

G=A;( 
(46)

0
OAc0

and each sigma is the a priori sigma used in the Filter initialization. This is not done
for a master station clock reinitialization, which is intended to accomodate GPS time
steering. For a frequency change event, R"s replaces Rc.S, where

R "CU = Q1,,- (47)

Cu-s Qc,.s

and Q0S = Qc~s + (2 (48)

where each input sigma is converted to the proper units before use. For a master sta-
tion switch event, the Rc.s matrix for the station that is no longer the master station
is replaced by

=0R111 •W (49)

0
°A10

for the first propagation step for which tj+1 > tuss. Then, the matrix is reset to the
Re values originally computed from input and saved (before it was replaced by a
matrix based on qj's set to m'0) for propagation from tj+l to tj÷2 and all subsequent
steps. The master station QcMS matrix (essentially a null matrix) is then used from
t, to t•÷, and all subsequent propagation steps for the new master station parame-
ters. No change in the process noise is required for a station time change event, since
it is assumed to be exact.

23



NSWC TR 87-187

BIAS STATES

As previously mentioned, the y parameters are divided into two subcategories-
station-related and orbit-related. All orbit-related y parameters require partial
derivatives from the trajectories except polar motion, in which case partials are
present only if the geopotential expansion axis is not the instantaneous spin axis or
the Celestial Ephemeris Pole.

Station-Related Bias States

Station Coordinates

The corrections to station coordinates, AS, are defined in a local-vertical
reference frame as follows:

AE\ /(east component

AS = AN -|north component (km)
4V \vertical component)

The nominal station coordinates are input in terms of longitude, latitude, and height
referenced to a specified ellipsoid. The state transition matrix for these states is the
identity matrix.

Orbit-Related Bias States

This category of parameter is included so constant force model parameters
affecting the orbit can be solved for. All of these parameter sets have identity state
transition matrices; and because of the pseudoepoch orbital element state definition,
they result in no terms that relate changes in e to changes in these parameters. Par-
tial derivatives are only required in forming the measurement condition equations
and are obtained by interpolating off the trajectory. Four parameter sets fall in this
category.

Radiation Pressure

The 3 radiation pressure parameters, RP, are

RP, radiation pressure scale (unitless)

RP2 = y-axis acceleration (10 km/sec1 )

RP3  \angle between the x and y axes (radians are usually(constrained to 90 deg, since it is not easily observed) /
These parameters are present for every satellite, if selected, and are identical to the
stochastic radiation pressure parameters except the corrections are modeled as epoch
state constants. The stochastic parameter states can be configured to emulate cur-
rent state constants. However, this method is not recommended because of the
partial derivative approximations made and the fact that the smoothing procedure
would have to be completed to obtain the orbit solution at each timeline. The RP
parameters should be used in two cases: to emulate a batch orbit fit using the Filter
or to estimate constants along with their stochastic counterparts (since the latter
states are assumed to be of zero mean).

24



NSWC TR 87-187

Thrust

The thrust parameters, T, are

* Tj ) firstcomponent

T2second component ) (kinlsec2)
T3 third component/

Thrusts can be modeled in the integrator in one of three reference frames-the body-
axis frame, the RAC frame, or the RVC frame (see Reference 1). Thrust parameters
are only present for specific satellites, as required, and their nominal values are
obtained from the trajectories.

Polar Motion

The polar motion parameters, PM, are

p pole component along Greenwich meridian (radians)

q = pole component along meridian 90 deg west of
Greenwich (radians)

S't rate of change of UT1-UTC (sec/sec)

The correc~tions to these parameters are modeled as constants over the entire fit span
with the At term reference time being the fit epoch. These states are common to all
satellites and stations.

Gravity Coefficients

The gravity coefficient parameters, GC, are selected gravity field model
coefficients (unitless). These parameters are common to all satellites and the
nominal values are thuse used by the integrator.

When the orbit-related parameters are viewed together, several comments
apply. With only one set of orbit-related stochastic parameter states and pseudo-
epoch orbital element states being solved for, the orbit model is essentially equiva-
lent to solving for position, velocity, and acceleration corrections with the accelera-
tion corrections constrained to be a zero-mean Gauss-Markov or random walk proc-
ess. The KR and G parameters should not be used as Etochastic parameters simulta-
neously. If KR is chosen, it can be viewed as solving for acceleration corrections along
the satellite-sun line and along the y axis. This is becaulse the direct radiation pres-
sure force is almost constant throughout the orbit, so the scale parameter is simply
scaling this near-constant acceleration. If G paeameters are chosen, the acceleration
solved for is resolved into the RAC coordinate frame. The constant RP parameters
could be used with the stochastic KR parameters to account for non-zero mean eccel-
erations in the satellite-sun and y-axis directions. A continuous thrust would serve
the same purpose for the G parameters.
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OBSERVATION EQUATIONS AND PARTIAL DERIVATIVES

RANGE

As mentioned in the GPS DATA FLOW section it is assumed that all data to
be used in the MSF/S system have been corrected for time transmission, relativity,
satellite antenna offset, tropospheric refraction, and solid earth tide station height
effects. Therefore the observation model is considerably simplified. For range (R)
data the nonlinear observation equation is given by

R1,k (tobu) = Ir(tob.) -rk (tobs) -- -[C &A (tobs) + Ali(tobs)]
j06 ACR4, (robs) (0

+C AltA(tub,) + Alk(tob, ) ++ -i sin Ei~k (rob.)

where i = satellite subscript

k = station subscript

tub, = observation time

ri(tob8 ) = inertial coordinates of satellite i at tub, interpolated off the
appropriate trajectory

rk (trbs) = [ABCD (tob.)f rk,. (51)

= inertial coordinates of station k at tubs

/C03 Itk COS Ak _N ( 0O
r =Er = (A + hk) [cos 4 sin k A'e 0 (52)

sin k sin 4) )

= Cartesian Earth-fixed station coordinates

(X,, 4q, hk) = geodetic coordinates of station k

= = oblateness of Earth

e = [(2-f)f W (53)

A' - aEarsih2,t (54)

aEarth - semimajor axis of Earth's reference ellipsoid

ABCD (tub,) - inertial-to-Earth-fixed rotation matrix at tobs, (Reference 1
contains the details of the inertial-to-Earth-fixed
transformation computations.)
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c = speed of light (km/sec)

AL°(tob,,) = nominal clock time offset of the ith satellite clock from
GPS time at tobt (to be described below)

At, (tobe) = time offset correction to the nominal clock for the ith satellite at tots
(nominally zero)

As4(tobt) = nominal clock time offset of the hth station clock from
GPS time at tub, (to be described below)

Aik (tobs) = time offset correction to the nominal clock for the kth station at tobs
(nominally zero)

ACRk (tots) = zenith tropospheric refraction correction at totb (nominally zero)

Eg.k (tabs) = 900 - Arccos (A . ikv) (55)

= instantaneous elevation angle from station k to satellite i

P = r, (tot.) - rk(tobs) (56)

UV = [ABCD(tub)] Yk (57)
\zkrl I el

/ XEF\
The vector AyF) is computed by evaluating equation (52) with hk = 0, and

indicates a unit vector.

Computation ofAt°(t) and Ai,(t)

The nominal satellite time and frequency offsets at an arbitrary time t are
given by

0 + ~(t -t,,);,58
AsO(t) = Aot0 + A0oi (t -- to,) + A';oj 2 (58)

20 (59)

A;s(t) = A;(, + S;(,A(t -to,) (59)

0 where At(), AW., and A70 are input quantities converted to internal units (nsec-ipse.,
parts in 16"'-pppm, and parts in 10 2/day-*pprm/sec) and t, is the ith satellite's clock
epoch. To accomodate jumps in the nominal clocks, four satellite clock events have
been defined. These events are described below in terms of their effects on the nomi-
nal clocks. The corresponding clock process noise adjustments were discussed in the
previous section. All events are input as time of the event (in day number and sec-
onds of the day) and associated clock offsets (in nsec, parts in 1012, and parts in
10"2 /day). These offsets are converted to the above internal units before use.
Processing of each event is described below.
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1. C-field adjust

A C-field adjust is a generic name for a commanded change in the satellite's
clock frequency (usually only applies to Cesium clocks). The amount of the change is
not known exactly, so a frequency uncertainty is added to the process noise matrix
for this event (see the STATE EQUATIONS section). This event affects the
nominal clock as follows:

For the first time t >tC.fALdd,

A0o, is replaced by A~o, + Aio• (tc.iwd, - t-) + A--;o
2

and AWoi is replaced by A;oi + A(C'frld, + A4oi (tC-fitd, -- t,)

All subsequent nominal clock computations for this satellite are referenced to a
redefined epoch, tC.fild,, and use equations (58) and (59).

2. Z-count adjust

A Z-count adjust is a commanded change in the satellite clock's time offset. The
amount of the change is known exactly. This event affects the nominal clock as
follows:

For the first time t z tzo,,,

A&o, is replaced by A&oi + A&z-count,

All further nominal clock computations for this satellite are based on equations (58)
and (59) with the clock epoch unchanged.

3. Clock reinitialization

A clock reinitialization is either a switch in the operational clock on the
', Ilite or an anomalous phase jump in the current clock. The uncertainties in the

r " estimates are set back to approximately the initialization values (see STATE
E JATIONS section). This event affects the nominal clock as follows:

For the first time t L- trenit

A, ,, and A'io are replaced by a new set of values from input and the clock epoch
is redd,&ned to tr.int, for all further nominal clock computations.

Frequency change

A frequency change is an unexplained jump in frequency. For this event, it is
possible to increase the uncertainty in each clock state (see STATE EQUATIONS
section). This event affects the nominal clock as follows:

For the first time t > tf,

Ato, is replaced by Ato, + A&o0 (tfR -t'.) + Scv (tf2 t),

Ato, is replaced by A;fc

and A7o, is replaced by AWf&
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All subsequent nominal clock computations for this satellite are referenced to a
redefined epoch, tf., and use equations (58) and (59).

If the total satellite clock offsets from a previous Filter or Smoother run are
available,

o

Ati (trbs) + Agi (t4.s) is replaced by ArT,,M,(tJ) + A;To 0 1'(tQ) (tob4 - ts)

At At
where ta- j-<tobs!5tj+ At

The total satellite clock offsets are defined in the SOLUTION AND

DIAGNOSTICS section.

Computation ofArk(t) and W(t

The nominal station time and frequency offsets at an arbitrary time t are given
by

A = Alok + A;ok(t-tc4) + A0oh (60)
2

0k (61)
A * M)= A'ok + S;ok(t-t)(

where ArO A;ok, and A70, are input quantities converted to internal units
(nsec-,Psec, ?arts in 10" -*ppm, and parts in 1012/day-.ppmnsec) and to, is the kth
station s clock epoch. To accomodate jumps in the nominal clocks, three station clock
events have been defined. These events are described below in terms of their effects
on the nominal clocks. The corresponding clock process noise adjustments were
discussed in the previous section. All events are input as time of the event (in day
number and seconds of the day) and associated clock offsets (in nsec, parts in 101,
and parts in 10' 2/day). These offsets are converted to the internal units before use.
Processing of each event is described below.

1. Clock reinitialization

A clock reinitialization is either a switch in the operational clock at the station
or an anomalous phase jump in the current clock. The uncertainties in the clock
estimates are set back to approximately their initialization values (see STATE
EQUATIONS section). This event affects the nominal clock as follows:

For the first time t L trint

A~o,, A'0 , and A*ok are replaced by a new set of values from input and the clock
epoch is redeffned to t,,i,• for all further nominal clock computations. This event is
also used to accommodate the GPS time steering procedure when the offsets between
GPS time and the master clock time change, but the designated master clock does
not.

2. Frequency change

A frequency change is an unexplained jump in frequency. For this event, it is
possible to increase the uncertainty in each clock state (see STATE EQUATIONS
section). This event affects the nominal clock as follows:
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For the first time t > to -

A1o1 is replaced by A&ok + Aok (t44 - te,) + A'iOk C•-2

Ar*0 is replaced by &i,

and Aio, is replaced by Si

All subsequent nominal clock computations for this station are referenced to a
redefined epochit,,, and use equations (60) and (61).

3. Time change

A time change is a commanded change in the station clock's time offset. The
amount of the change is known exactly. This event affects the nominal clock as
follows:

For the first time t at,

Ao,o is replaced by Asok +

All subsequent nominal clock computations for this satellite are based on equations
(60) and (61) with the clock epoch unchanged.

4. Master station switch

The master station switch event involves two stations simultaneously: the original
and the new master stations. For the station that is no longer the master, a clock
reinitialization is dcne at tMSS, i.e.,

Atak, Ao0k1, and A10o are replaced by new input quantities,

the clock epoch is redefined to be tAiss, and all subsequent nominal clock computa-
tions are referenced to this redefined epoch. For the new master station

Arok., Wok., and A'ok. are replaced by new input quantities,

the clock epoch is redefined to be tuss, and all subsequent nominal clock compu-
tations for this station are referenced to this redefined epoch. The process noise
terms for these stations' clocks are adjusted as specified in the previous section. In
addition, the information array elements corresponding to the clock states for the
new master station have to be modified. (See the FILTER ALGORITHM section.)

The linear measurement model, equation (2), requires computation of the
measurement residuals, z, and partial derivatives of the observations with respect
to the parameters, A. Each residual is computed by evaluating the observation
equation (50) at tr,., with Ag(tobd, Ard(ted, and ACR (tob. set to zero and subtracting
the result from the observed value. Next, the partial derivatives required for the A
matrix are defined. Whitening and decorrelation of the observations are discussed in
the FILTER ALGORITHM section.
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Ran.e Partial Derivatives

As mentioned in the ESTIMATION CONCEPTS section, the partial deriva-
tives of the observation with respect to the parameters are required for the Filter
algorithm. These derivatives are obtainedby differentiating the observation equa-
tion with respect to all parameters explicitly present, and using the chain rule and
models to relate them to the solution parameter states. Let P,.k = r, -rk, pj.A = Ipj~l,
and R = Rk, then the partial derivatives of range with respect to the parameters in
the observation equation are:

dR OR p,.rh
O = _ Or& : ,(62)ari ark p,.

dR dR c
,- - (63)

OR (64)
aACR4 sin E,,#

Using these partial derivatives, the partial derivatives with respect to the solution
parameters are:

5R OR dr, aR (tob.-tj a (65)

MR, r OMR, anr 2 aKR,(tA)

(see equations (22) and (25))

OR aR ar, OR t.tb,-t/ O,(t ) (66)
aG0 ar a00, Or, 2 dG0(tj)

(see equations (29) and (32))

OR OR aACR4  _ R (t, -t)
-0 T Cs, (67)

aACRk(tj) "dACR, aACR,,(j) aAC .

OR _ OR OA&,_ OR ((to--t) - toby.to (68)
O~v Ar, OCsv y~ 2

OR s - OR does, - OR (tb.--to -) (69)

OAIh OaCus, OAlrh

OR OR dr, - (70)
Oe, Or, Oe3
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where ar interpolated off the reference trajectory at t.u

aR a- ark _ aR (ABCD)rTT (71)
a'&s 6 ark aas k art,

where Th = (14s 'v)k (72)

UO = r\ (73)

0/

/v = xk, , aav - -- (4
uV Ai• l -- (74)

uv X IiI

--,= (-- iff <o) (75)
IUVXUOI

u -(76)UN= UV×X4, O=N-

aR aIR ar,- OR(77)
aRP, aii aRP,

ar,~
where-- is interpolated off the reference trajectory at t",

aRP'

aR = aR ar, (78)
aT, ar, aT,

0 if tr". S tr
a- [•T(to&)-4,to,.&)4,(tT 8)nT(tT)]r if tTS < to. ! tr, (79)
aTi

[4.,(tob)(4;,'(t,)4rftT,.) -*,t'hT)r,(tr)))]r if t". > trT

where •, = partials of position and velocity with respect to epoch
orbital elements obtained by interpolating off the reference
trajectory at the appropriate time
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= partials of position and velocity with respect to the
canonical thrust parameters obtained by interpolating off
the reference trajectory at the appropriate time

and [ ]r denotes the first three rows of the 6X 3 matrix

OR aR /ar, Or, ar, (,, -TR +#, (80)
Opm Ori Op aq Oat(To) OZt(To)/ r, P

aOrr, a r, aO,
where-& -, and - are interpolated off the

Op aq aA1(TT 0 )UTo .
reference trajectory at t., To denotes the trajectory epoch, and

-, ,=( No~•. (1
arF (81)

OR OR aRri (82)
aGC ar, 0CC

where a-• is interpolated off the reference trajectory at t.6,

Observation equations and partial derivatives for all other data types are
derived from the range observation equation and partial derivatives.

RANGE DIFFERENCE

Range difference observations can be either of two types: the result of differ-
encing ran•e observations at two different times or the result of integrating the
Doppler-shifted frequency for a given time interval, AtRD. The latter type includes
differencing accumulated delta ranges that are continuous-count, integrated
Doppler from some epoch. Both types are treated the same in the measurement
processing. These observations are pairwise correlated if the end of one range differ-
ence interval is the same as the beginning of the next interval. This correlation is
accounted for in the processing as described in the FILTER ALGORITHM section.
The nonlinear range difference (RD) observation equation is given by
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Rea,,, It,(toba.)-rt/tb&)I -- r,(t0&. --At.dJ-r& (t•.- -ALH.dI

& (tub,) + 41, (tub.)) &# ( (tub, - te,,) + M, Ati)) (

+ (A~t~ + Aa& (tub.)) - A*& (tub. - IR!)) + Alk (tub.j &-tI)
106 L

AC,,(tob,) ACf,(t,,. - At.))
+

sin E, (tub) sin E,, (t - Atit)

where t,. = end time of the range difference interval

and Atol = range difference interval in seconds.

This equation is just the range observation equation evaluated at two times and
differenced. The computed value is the difference or two computed range values.
Therefore, the partial derivatives are the range partial derivatives differenced,
where the derivatives at both times are based on the same time tj. As a result of this
differencing, only the changes in the clocks over the interval Atftio are relevant, i.e.,
dRD _RD

a-, -0.

Differenced and doubly-differenced range difference data types are not
included in the MSF/S system. However, range difference data can be processed in a
mode that emulates these data types. The differenced range difference emulation is
based on the idea that single differencing to remove the satellite clodk frequency off-
sets from the data is equivalent to solving for an independent frequency offset for
every group of simultaneous observations of that satellite. This can be emulated by
setting the clock frequency offset state process noise variance to a large value to
decorrelate the estimates between mini-batch steps. The satellite frequency drift
state should not be solved for. For doubly differencing, this variance adjustment
must also be done for all station clocks except the master clock. This processing
technique fully accounts for the measurement correlations introduced by differ-
encing. However, this emulation is not exact if more than one observation from a
given satellite-station pair is present in the mini-batch interval.

DIFFERENCED RANGE

Differenced range (DR) observations are derived by differencing two simulta-
neous observations from the same satellite for anypair of stations. The purpose of
this differencing is to eliminate the satellite clock from the observations. No account
of the correlations introduced when two pairs of stations have one station's data in
common is included in processing of these observations. The nonlinear differenced
range observation equation is given by
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DRijk~k. •= Iri(tob.) -- rk(tob,)I -Irtobs) -rk. (tubs)

+ A 0 tbs) +A (4 0 ) - (Alto (tob8 + AlA. (tbd)] (84)

ACR,(t~b.) ACRk,(taba)+

sin E,,k (tasbd sin Elak, (tabs)

where k and k' are indicies specifying the two stations. Again, the computed value is
obtained by differencing two range computed values, and the partial derivatives are
obtained by differencing the two range partial derivatives. Zeroes are used for the
range partial derivatives involving the other station. This differencing results in the
partials for satellite clock states being zero.

Range data can be processed in a mode that emulates this data type. This
emulation is based on the idea that single differencing to remove the satellite clock
time offset from the data is equivalent to solving for an independent satellite time
offset for every group of simultaneous observations of that satellite. This can be emu-
lated by setting the clock time offset state process noise variance to a large value to
decorrelate the estimates between mini-batch steps. The satellite frequency offset and
drift states should not be solved for. This processing technique fully accounts for the
correlations introduced by differencing. However, this emulation is not exact if more
than one observation from a given satellite-station pair is present in the mini-batch
interval.

DOUBLY-DIFFERENCED RANGE

Doubly-differenced range (DDR) observations are derived by differencing two
simultaneous differenced range observations from any pair of satellites for the same
pair of stations. The purpose of this differencing is to eliminate the station clocks from
the observations in addition to the satellite clocks that were eliminated by the first
differencing. No account of the correlations introduced by this differencing technique
is included in the processing of these observations. The nonlinear doubly-differenced
range observation equation is given by

DDR(i,,)/Ak,ke) (=ri(tobs)--rk(tobs)I -ri(tob 8 )-rk, (tabs)I)

- (riL(tob,) -rk(tobs)[-Iri.(tobs) -- rk (tabs)I)

• 1-- 1 )(85)

+ ACR,(tab()

(sin Ej,k, (tabs) sin Ei,k, (tabs)
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where i, iV are indices specifying the two satellites and k, k' are the station indices. The
computed value is obtained by differencing two differenced range computed values,
and the partial derivatives are obtained by differencing the two differenced range
partial derivative sets with appropriate zeroes for irrelevant parameters. This
differencing results in all clock partials being zero.

Range data can be processed in a mode that emulates this data type. In addition
to emulating differenced range data, all station clock time offset states (except the
master clock) should have their process noise variances set to large values. Also, all
station frequency offset states should not be solved for. The comments given under the
discussion of emulating differenced range also apply to doubly-differenced range
emulation.

FILT-R/SMOOTHER PROCESSING FLOW

Figure 4 gives a functional definition of the processing flow within the MSF/S
system of programs. The Filter is initialized at to or restarted at an arbitrary mini-
batch step if previous filtering has been done. At each mini-batch step a measurement
update is performed first, followed by solving the equations and generating diagnostics
if required, and then propagating to the next mini-batch step. No propagated solution
is ever computed unless observations are not present in a given mini-batch interval
and solutions at each mini-batch step are required. This process is repeated until the
solution and diagnostics at t.. are completed. At this point the y parameter solutions
are final, i.e., no smoothing of the y parameters is possible. If stochastic orbit-related
parameters are not present, the resulting orbital element and constant force model
parameter corrections can be applied to their initial values and used to reintegrate a
trajectory if the orbit is not converged, or an improved trajectory can be linearly propa-
gated as in a batch fit. The polar motion and station coordinate tables are updated at
this point. The updated station coordinates are required for the residual generation
procedures. The appropriate information arrays and partial derivative matrices must

e saved from the Filter at each mini-batch step to be used in the smoothing process. A
Filter propagated trajectory can be created at this time if required and also a set of
improved initial conditions.

Two paths within the Smoother are possible. If state and covariance estimates
are required the left side is followed. If state estimates only are required the right side
is followed. In the first case the smoothing arrays are initialized at tN and smoothing
proceeds in reverse time order. At each mini-batch step smoothing arrays are
manipulated followed by solving the equations and generating diagnostics. This is
repeated at each step until the process terminates at to. Smoothed trajectories can
then be propagated and/or the SATRACK covariance matrices can be computed. In the
second case the state estimates are initialized at tN as in the first case and smoothing
proceeds in reverse time order. At each mini-batch step the state estimate is computed

ased on the estimate at the previous step, the information arrays saved in the Filter,
and the stochastic state equations. This process is repeated until to is reached. No
covariance information can be computed for this option but the rest of the diagnostics
can. Trajectories can then be propagated followed by generation of residuals.
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FIGURE 4. FILTER/SMOOT[IER PROCESSING FLOW
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The rest of this report will detail the square root information implementation
of the Filter and Smoother algorithms, the method of obtaining the solution and
diagnostics (these are identical in each algorithm except for handling the yparame-
ters and for residual generation), the trajectory propagation procedures, and the
SATRACK covariance matrix generation formulation. Derivations of some of the
equations and showing that they are equivalent to the standard Kalman filter/RTS
smoother equations are included in the appendicies. Also a discussion of properties
of Householder transformations and the upper triangular matrix inversion method
are given in the appendicies.

FILTER ALGORITHM

The Filter can be described as a square root information filter based on the
form of the state equations given in the STATE EQUATIONS section and the
observation equations given in the OBSERVATION EQUATIONS AND
PARTIAL DE VIRATI VES section. The Filter consists of four processing steps,
the last three of which are repeated: Initialization/Restart, Measurement Update,
Solution and Diagnostics (optional), and Propagation. After initialization or restart
of the information arrays, at each mini-batch step, tj, a measurement update is per-
formed if there are any observations in the corresponding mini-batch interval. Then
the solution and diagnostics are computed if required and the information array is
augmented and propagated from tj to tj Portions of the information array required
for smoothing are then saved. This cycle repeats until a measurement update at tN
has been done. The y parameter information at this time is final and is used
throughout the smoothing procedure. Details for each processing step are given
below.

INITIALIZATION/RESTART

The primary purpose of this step is to set up and initialize the information
arrays. The parameters, if present, are always ordered as given in the state equation
description, i.e., p parameters with orbit-related ones before measurement-related
ones, x parameters, and then y parameters. In addition since both orbit-related p
parameters and tropospheric refraction are modeled as first-order Gauss-Markov
processes, these are at the top of the parameter list so that the propagation step com-
putations can be made more efficient. The following notation is usedin the rest of
this report.

N1 = number of orbit-related p parameters, maximum of 6Nsv

Nu -= number of measurement-related p parameters, maximum of
3Nsv + 3 NMS

Np = number of p parameters (must always be > 0) = ND + NM

NCm = number of Gauss-Markov p parameters, maximum of 6 Nsv + NMS

N" = number of x parameters, maximum of 6Nsv

NY, = number of station-related y parameters, maximum of 3 Nws
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NY, = number of orbit-related y parameters, maximum of
3Nsv + 3N7T + NpM + N(,C

NY = number of y parameters = NY. + Ny,

NTOT = total number of parameters = Np + N, + NY

where Nsv = number of satellites

NMs - number of stations

NT - number of thrusts

Npu - number of polar motion parameters = 3

NGC = number of gravity coefficient parameters

The parameter set for a particular fit is selectable but with the following
restrictions:

1. All orbit-related parameters except for thrusts, polar motion, and gravity
coefficients are present for all satellites and individual parameters must be selec-
tively deweighted if required.

2. All measurement-related parameters are present for all satellites or sta-
tions and individual parameters must be selectively deweighted if required. The
clock parameters for the master station are automatically deweighted and the
corresponding white noise spectral densities are set to approximately zero.

3. All station-related parameters are present for all stations and must be
selectively deweighted if required. If orbits and station coordinates are being solved
for simultaneously, the east component of one station should be deweighted.

4. If only differenued range and doubly-differenced range are being processed,
satellite clock parameters are not included in the state equations. If only doubly-
differenced data are being processed, satellite and station clock parameters are not
included.

5. If only range difference data is being processed, all satellite and station
time offset parameters should not be deweighted unless all the white noise spectral
densities are zero.

6. Stochastic orbit-related parameters can only be solved for if pseudoepoch

orbital elements are also present in the equations.

The following notation is used in the rest of this report:

indicates a Filter predicted quantity
Aindicates a Filter estimated quantity

indicates a Smoother estimated quantity
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The initial forms of the two information arrays at to are given by

p-x information array y information array

A0  o 0 0
S~NY I

NTOT I

where AN is an NPX N. diagonal matrix with each element of the form I/Op and/R, is
an NYX NY diagonal matrix with each element of the form i/o. co and oy are a priori
parameter sigmas in internal units. (The y array is not present if NY 0.) The A,,
matrix is N, X N, and has the form

R,= R!R (87)

where each A,, is a 6 X 6 matrix computed for each satellite by

Ai = C,'AC rT' (88)

102R
2
CIA 0

2where CRAC =C (89)

G2*

0 O"A

G's are input a priori sigmas on radial, along-track, and cross-track position (in km)
and velocity (in km/sec) at the fit epoch.

(R0 0 (90)

R r x r× fIrw (91)
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r, v are inertial coordinates of the satellite at the fit epoch interpolated off of the
reference trajectory.

Ox Ox ax

Oa de,
dy .y ay

T' na de, (92)

ral 0e Olca ae, ........

T'isa matrix of partial derivatives of position and velocity at the fit epoch with
respect to orbital elements at the trajectory epoch interpolated off of the reference
trajectory.

A, is just the fit epoch RAC position and velocity sigmas transformed to a covariance
matrix on orbital elements at the trajectory epoch, inverted and with the square root
taken.

To restart the Filter the assumption is made that all physical constants,
spectral densities, decorrelation times, and other quantities must be the same as
those used in the last execution of the Filter. The two information arrays are then
initialized with the results of the propagation step from te-1 to te as follows:

p-x information array y information array

IRP, 'RP , APY _VP (/, i,)el (93)

MEASUREMENT UPDATE

( At AtiAll observations in the mini-batch interval ti -_--, tj + -- are processed

simultaneously because computationally this is the most efficient. Measurement
updating is carried out by augmenting the propagated information arrays with the
whitened and deccrrelated measurement matrix and residuals (A z) and tranforming
this expanded array using Householder orthogonal transformations. The details of
these procedures are given as follows:

At At
1. All observations with observation times, tube, such that t - <-robns tj + -

are processed for the stations and satellites selected unless: t 2 2

a. this data type is not being processed or tub, lies outside of the subspan
for this particular data type,

b. the corresponding pass number is in the list of passes to be deleted,
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c. the observation sigma indicates that this observation has been
previously tagged (negative sigmas indicate this),

d. any elevation angle is less than E1.L -an input tolerance in degrees, or
e. a clock event for the given station or satellite is present in this

interval.
At the start time, tsRed,,of the reduced mini-bath step span the mini-batch

/~ed At I e.+At" td'ed
interval is defined as 2SRed- - t d + . At the end time, ted,of the

reduced mini-batch step span the mini-batch interval is defined asS AtRed" At1

tE 2 - , t'&Rdd + Red. + If no observations are present in a given mini-batch

interval, the Householder transformation is still done in order to upper triangularize
the array, i.e., the transformation indicated in equation (103) below is done with the
(A z) rows absent. If no solution is required the processing skips to the propagation
step.

2. For all remaining observations, the partial derivative matrices
(designated A') relating the observations to each parameter are computed along with
the residuals (designated 0-C') as described in the OBSERVATION EQUATIONS
AND PARTIAL DERIVATIVES section. Only those partial derivatives with
respect to the relevant satellite and station parameters are non-zero. All others are
zero with each column corresponding to a parameter as ordered in the state
equations. These quantities are denoted by

A' = (Ap A. A) z'= O-C' (94)

Mj X (Np + N, + Ny) Mj 1XI

where Mj = number of observations in the mini-batch interval centered at tj.

3 All obsei vations are then whitened and decorrelated. To whiten range,
differenced range, and doubly-differenced range each row of the partial derivative
matrix A and the residuals r is divided by its observation sigma, ob, or by 0 ob68M1 for
that data type if oob, < Oob,,N to get A and z. For the range difference data where
tobs - AtRD * Lob (vv 'vious, i.e., the beginning of the range difference interval is not
identical to the '•-.,Y ovation time of the previous observation from this same station-
satellite pair, a similar procedure is used. However, if the times do coincide the
observations are correlated and must be whitened and decorrelated before being
processed. The range difference data are whitened and decorrelated as follows (see
Appendix F for the derivation of this procedure):

If the observation is not tagged the two input sigmas for the observations
differenced to obtain the range difference observation, designated OA1R,,., and OADR,,
are possibly redefined as follows:

A, £' - <QADR,,., < V2__ (95)

ORD~MI ORI)M,,V

OADR, -- if 1 4DR, < (96)
vT4
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The range difference observation sigma is then given by

OR (ADR,, +A) (97)

If GADR = 0 or the last range difference observation for this satellite-station pair
was not'processed, the observation is whitened by dividing A'Ri , and zhD by ORD"
0, is then set equal to ORD , and E,,, ARD , and ZRQ are saved. If oAIR, = 6 the
observation is whitened and decorrelaed as follows:

k
= .. (98)

-= (dn) - (99)

ARD,, = (A'RD,, -P.-I ARD,,.,)/On (100)

ZRD,, = (zkD. -P.P• ZRD,,1 )I/, (101)

0y, ARD,, and ZRD. are then saved. It is assumed that if an entire mini-batch interval
is processed befor e the same satellite-station pair occurs again, the new observation
is uncorrelated with the previous observation. This is done so that information does
not have to be saved for more than one mini-batch interval.

The effect of the accumulated clock noise during the AtRD interval is not
modeled so the minimum observation sigma for range difference data should be used
to account for this effect.

4. The propagated p-x and y information arrays without the terms required
for smoothing are given by

P yy)j-= (Ry iy)j.! (102)

(Np + N,) X (NP + N, + NY +1) NY X (NY + 1)

The measurement update is done in two ste ps if y parameters are present. The
p-x information array is augmented by (A z), anda sequence of Householder
orthogonal transformations, T,, are applied to zero out elements below the diagonal
of the first N.+ N, columns:
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TXA X AX *l AY 1.I , x (103)A A 0 o0 Z
(Np+N,+'Mj) X (Np+Nx+Ny+l)

where Ap and kX are upper triangular matrices. If no y parameters are present the
columns with a y subscript are absent, z = e, and the measurement update is
complete. Thee term is related to the sum-of-squares of weighted residuals. Ify
parameters are present, the measurement update is completed by augmenting the y
information array with (AY i)and applying another sequence of Householder
orthogonal transformations, ty, to zero out elements below the diagonal of the first
NY columns:

TA = (104)

(NY-t-Mj) X (Ny +-1)

where both AY and hy are upper triangular matrices, i.e., the y information array is
always upper triangular. (RY Y.) could be added as extra rows in equation (103) above
but this is not done to save storing a large block of zeroes that would never change.

The transformation matrices Tp,, and f are not explicitly computed.
Householder transformations can be carriedout by operating on the columns of a
matrix one at a time as follows:

Let R be an arbitrary m X n information array. To zero out all elements below
the diagonal of the first column define a scalar s and a vector u by

s = -,vf(R(1,1)) [R(i,1)J) (105)

u(1) = R(l,1)-s (106)

uti) = R(U,1) i -2,3,...,,m (107)

1 
(108)

s u(1)
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m
Then define y¥ = a E u(i) R(LJ) (109)

The effect of the transformation T. on a column i is then written as

Tr(R(ij)) = R(Qj) + yju(i) J = 12...,m (110)

This results in the first column being as shown in Appendix G. This is the

intended result and this must be done to every column of the array. This procedure
is then repeated to zero out the below diagonal elements of the second column with u
defined by the last m - I rows of this column. This procedure (in which the matrix
operated on decreases in both dimensions at each step) is repeated until the required
number of columns have been transformed. A property of Householder transforma-
tions that affected the implementation of equations (103) and (104) is discussed in
Appendix G also.

5. If any diagnostics are to be computed or a trajectory is to be propgated, the
solution is then computed as described in the SOLUTION AND DIAGNO STICS
section. If a manter station switch has taken place in this interval the two diagonal
elements of the R. array corresponding to the new master station clock parameters
are set to large values after solution. If the last mini-batch interval centered at tN
has been processed the filtering is complete and a solution is computed for the y
parameters if present.

PROPAGATION

Propagation from t to t+, I involves modifying the p-x information array to
incorporate the effects of4process noise. Bias parameters are unaffected by process
noise so that Ay, = R,. Propagation also involves generation of auxiliary arrays
required for smoothinm. The propagation step is based on the state transition and R,
(derived from Q) matrices described in the STATE EQUATIONS section. An
augmented p-x information array is upper triangularized over the first Np columns to
carry out the propagation as follows:

NP NP N, NY I

R M R, 0 0 0

tA,, kpzvp 0 RP Ry , = (111)

R1 Vp 0 R, iX

(R; R; Rp ;y z N

45zy 1 NP
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where R" is an upper triangular matrix and " denotes the smoother-related matrices
requiredto obtain smoothed state and covariance estimates at tj. The Househoulder
transformations are done as described above in the Measurement Update processing
step except that a computational reduction is made. All columns of the - RM matrix
have zeroes below the diagonals down to and including row Np. When applying the
transformation to the first column, rows 2 through N. for all columns do not change
because of a property of Householder transformations given in Appendix G. These
rows are ignored in the computations to save on computer time. This reduction
applies to the first N.- I columns as they are zeroed out below the diagonal. Another
property of Householder transformations given in Appendix G is also applied i6,
implementing equation (111) and is possible because R. is diagonal for the first
NGm rows and columns. When processing the first column the only additional column
that changes out u, Lhe the first 2 Np columns is the N, + 1 column. When processing
the second column only the N. + 1 and NP + 2 columns change out of the first 2 N
columns. One additional column is affected until column NGM + 1 is processed. 'he
part of R; corresponding to the Gauss-Markov parameters is upper triangular and
the part of R; corresponding to these same parameters is lower triangular. This is
the reason why the Gauss-Markov parameters are ordered first in the state equa-
tions. The R. and M arrays are a function of the mini-batch step size so they are
adjusted starting at tsRtd and then reset to their original values at tEREd. Portions of
the R. matrices corresponding to the satellite and station clocks are adjusted
appropriately for events as required. The predicted solution is never computed in a
square root information filter because either a full matrix inversion or a House-
holder transformation followed by inversion of an upper triangular matrix is
required.

Appendix H discusses the derivation of the measurement update equations
(103) and (104) and the propagation equations (111). Also this appendix shows the
mathematical equivalence between these equations (actually a more general form of
the propagation equations) and the Kalman filter eqtuations given by equations
(3) thru (7) in the ESTIMATION CONCEPTS section.

SMOOTHER ALGORITHMS

Two smoother algorithms are included The first uses Householder trans-
formations to upper triangularize smoothing information arrays from which both
state and covariance estimates can be computed. This is referred to as the Array
Smoother here but is commonly called the square root information smoother. The
second combines the stochastic state equations and data equations derived from the
information arrays saved in the propagation step of the Filter to obtain state esti-
mates only, i.e., no covariance information is available. This is referred to as the
State Only Smoother. The. Array Smoother consists of three processing steps, the
last two of which are repeated: Initialization, Array Smoothing, and Solution and
Diagnostics. At each mini-batch step t a smoothing array is constructed using the
array solved at t4+1 and the array saveA in the Filter when propagating from !j to
tj+ 1. This array is upper triangularized for 2Np + N, columns and combined with the
y parameter solution matrices from tN (which remain constant throughout the span)
to obtain the state and covariance estimates. This cycle repeats untilthe solution at
to has been computed. Details for the first two processing steps are given below
followed by a description of the State Only Smoother.
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INITIALIZATION

The purpose of this step is to set up and initialize the information arrays. This
step is common to the two smoother algorithms. The order of the parameters is the
same as that used in the Filter. At tN Te arrays are initialized with the arrays
determined after the measurement update at tN done in the Filter. The Smoother
solution at tN is identical to the Filter solution at tN. The information arrays at tN
are given by

p-x information array y information array
NpNZ NY 1 NY I

(112)(RP RP, it, NP (AY y,v )~ N,
0 k" RAy i N.

where A,,/t•, and A are upper triangular matrices. The y information array does not
change in the smoothing process.

ARRAY SMOOTHING

Smoothing of the p-x information array at time t is accomplished by applying a
sequence of Householder transformations to zero out elements below the diagonal of
the first 2Np + N, columns of an augmented p-x information array as follows:

NP N, Nx NY 1

PPX R;(t + 1) Rp(ts+I ;(j+ i)Vpj Rllts+l) R:yits+,) z,*(tj+,)!
0 R(tj +,)V R;(t1 +) R,(t1+1)

R 0 R(tj) Rl(ts) lR;,(t) zý(it) Np

0 0 R; (tj) R,(ts) za(ts) } N,

where the- terms correspond to the * terms saved in propagating in the Filter from ts
to t1 + 1. Rp, R'p, R, and R, are all upper triangular matrices. The Householder trans-
formation is carried out as described above in the Measurement Update processing
step. These computations also take advantage of the sparseness of the V,. matrix and
the fact that M is diagonal. The terms idenLified with the superscript are not
required for any further computations. The solution method for this approach is
given in the SOLUTION AND DIAGNOSTICS section. Appendix I contains a
derivation of these smoothing equations and also shows the mathematical equiva-
lence between these equat'ons (actually a more general form) and the RTS smoother
equations given by equations (8) thru (10) in the ESTIMATION CONCEPTS
section.
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STATE ONLY SMOOTHING

This approach utilizes the stochastic state equations involving the p and x
parameters along with the data equations derived from the information arrays saved
in the Filter propagation step to recursively generate smoothed estimates for the p
and x parameters. The initialization arrays given above are solved at t to get ki•
Azk, and Ayk. Then given the smoothed state solution at t.. l, the snoothed state
solution at tj isjust given by

Ap' = [Ap(tj)] ' [4(t)- Ap~t)Ap;+,- (t,)Ax;÷,- ft,(tj)Ay,] (114)

A4Z = A&Xj+-VojAPi" (115)

where-denotes matrices saved in propagating from tj to tj+ I and h,(tQ) is always
upper triangular. All elements of V which multiply non-orbit-related p parameters
are zero and orbit-related p parameC(rs for a given satellite affect the x parameter
solution for that satellite only. This procedure requires the inverse of an N X N
upper triangular matrix at each mint-batch step instead of an (No +N,)X() 4 ,+l,)
matrix as in the Array Smoother algorithm.

SOLUTION AND DIAGNOSTICS

The solution method and the diagnostic computations are almost identical
between the Filter and Array Smoother and are therefore described here together.
The state solutions and all diagnostics depend on first computing the inverses of the
upper triangular p-x and y information arrays. These inverses are always computed
in the Array Smoother but are only computed in the Filter if any diagnostics are
required or a trajectory is to be propagated. The possible diagnostics are correlation
coefficients (at every nth mini-batch step), transformed corrections and standard
deviations, total clock offsets, and residuals and signal-to-noise after fit For the
State Only Smoother all diagnostics are available except for the standard deviations
and correlation coefficients.

SOLUTION

The solution (state), Axj, and covariance, Pj, estimates are computed as follows:

Ap /Rp Rpz)F(zzp\ (p\a
(iRPY Ryl

AXi = Az 0 R, \R'). [' (1 ICY)
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I -T

P = Rj RJ (117)

= =~ 0 R., 0 R-i \R 1 ,) (118)
1\ -,

0 Ry

where all quantities denoted in the Filter and in the Array Smoother are

evaluated at tj except for the Smoother, in which R,'and zy are fixed at their values

at tN. All Rp, Rx, and Ry matrices are always upper triangular so that both (RP Rex)'

and Ry are upper triangular also, since upper traingularity is preserved by inversion.
The inversion of upper triangular matrices is discussed in Appendix J. The solution
is always computed for the y parameters at tN in the Filter and may be computed at
each mini-batch step if the y parameter only or full diagnostics are being computed.
The solution information is saved in the Filter only if a trajectory is to be later
propagated. In the Array Smoother this information is always saved because it is
required for trajectory propagation and residual generation. The full covariance
matrix is computed only for mini-batch steps for which the correlation coefficient
matrix is required. Certain submatrices of the covariance matrix are required for
deriving the standard deviations on transformed corrections.

At the last mini-batch time tN in the Filter the final y parameter solutions are
available. Each set of coordinates in the station coordinate table is then updated as
follows, if these parameters were improved:

AA /180 (1 --esin'1)" 2 AEN

ir aEarth COS 4P

=1+ (1 -e-sin4)932 ANN (119)
n Car•h( 1 )

h h AVN
Updated Orig.

XYXEF AE

YEF = YEF + T AN (120)

(E)ZE) (AV)
Updated Orig. N

/AE\
where AN) are the coordinate corrections at tN and T is the transformation matrix

N
defined in the OBSERVATION EQUATIONS AND PARTIAL DERIVATIVES
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section- equations (72)-(76). Each daily entry in the polar motion table is also
updated as follows:

= + AN(121)

At Ator (A(/St)N(t -- to)/

where t - to is in seconds.

Improved initial conditions at the trajectory epoch To can be computed in the
Filter if no stochastic orbit-related parameters are present. These improved initial
conditions would primarily be used to reintegrate a trajectory if convergence has not
occurred when emulating a batch fit processor. The required equations are given as
follows:

ar(T0 )

+ '&eN (122)
1aiT o)

arp)ve( r/R.f as

where the partial derivatives of position and velocity with respect to orbital elements
are obtained by interpolating off of the trajectory at To.

, KRNom + ARPN (123)

Tiln,. = TIN... + ATN i-=1,2 (124)

COIRRELATION COEFFICIENTS

The correlation coefficient matrix is computed every nth mini-batch step in
terms of the actual solution parameters and not a transformed set. Each element of
the covariance matrix is computed as follows:

NTOT

Pmsn = Pn,m = rm,e n,m = 1,2,...,NTOT (125)
?=max(mn)

where r -R" and peP=R 'R I

and f= max(rmn) takes advantage of the upper triangular form of R '.Each
correlation coefficient is then computed as follows:

ifm-n
n,m = 1,2 ... ,NTOT (126)

Cmn = Cnm = ifm*n
%/PMM Pnn
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Only a lower triangular array of correlation coefficients is computed since the
covariance matrix is symmetric. The correlations between any pair of y parameters
in the Smoother is the same at every mini-batch step.

TRANSFORMED CORRECTIONS AND STANDARI) DEVIATIONS

All solution states, as mentioned before, are corrections to nominal values in
internal units. On option these corrections and their corresponding covariances are
converted to more meaningful corrections and standard deviationsbefore being
printed or plotted. If the state only smoothing option is selected no standard devia-
tions can be computed. y parameter only corrections and standard deviations can
also be computed in the Filter.

Stochastic radiation pressure parameter and all orbit-related y parameter
corrections and standard deviations are unchanged. Gravitational acceleration
parameter corrections and standard deviations are converted to 10 12km/sec" for
plotting so that they are in the same units as the y-axis acceleration parameter.
Tropospheric refraction parameter corrections and standard deviations are con-
verted to cm for plotting. Satellite clock parameter corrections and covariances are
converted from pseudoepoch state to current state representations as follows:

Aiý(tj) 1 0 0A7

Aa(tj) = tj-to 1 0 A~o = *L.C,.ACsV(tj) (127)

Atj), (tj-toY t A
2

Pcsv(tj) =4ýcs P0, (t) (128)

Frequency drift terms are converted from ppm/sec to parts in 10'2/day, frequency
offset terms are converted from ppm to parts in 1012, and time offset terms are con-
verted from psec to nsec. Station clock parameter corrections and covariances are
also converted from pseudoepoch state to current state as follows:

= = 4FCMsACMs(tj) (129)

PCUS(tJ) = pi" (t)' (130)
.:MS

Frequency offset terms are converted from ppm to parts in 10'2 and time offset terms
are converted from psec to nsec. Only the square roots of the diagonals of Pc,, and
Pe., are required.
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For each satellite the pseudoepoch state orbital element, radiation pressure,
thrust(s), and gravity coefficient corrections and covariances are converted to
position and velocity corrections and covariances in the RAC reference frame as
foilows:

/Ar\
Ar)(tj) = Ar ( +eAO+ 4,RpARPj + 4TIATI + ArAT2 + 4.pM&PMj + p oGCAGCj) (131)

PRAC(tj) = AT (4).P.44 +I'IRPPRP 4fRP+ TPTr T,+ 4T 2rP7A' T,}I+pMPPM•PM (132)

+ 4)GCPGC ClGC + 2 4ýee,RP ~IW + 2 4ePe,T, 4T1 + 24.P.,T2 4TT* + 2 1Ve,PM 4PM

+ 2C~Pe,GC G(ýC)A

where = () (133)
(0 R

•-r / x r - (134)

r,i = inertial position and velocity obtained by interpolating off of the
trajectory at tj

'b = 6 X 6 state transition matrix -- obtained by interpolating off ofa.
the trajectory at t,

= oRP f

4RP = (t partials of r and a at tj with respect to RP interpolated off
aikt~) of the trajectory

/ar(ti)
( aT

4~T I =partials of r and i~at t -with respect toT computed using
a a~t/) equation (79) in the Range Partial Derivatives subtsec-
-- / tion except evaluated at t1 and all 6 rows are required

ar(tj)
(--- | I qain(0i h ag ata ~rvtvss~sc

1P= I = partials of r and I at t- with respect to PM computed as in
4%d~t) I equation (80) in the iKan e Partial IDerlvatlves subsec-

tion except evaluated at tj and i replaces r in computing
\-•/ the velocity partials
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acc
4cGc i ) opartials of rand ; at t. with respect to GC interpolated off

diktj) / of the trajectory

Gcc/

Pe, PRP, PT, PPM, PGC, PeJP, PeT, Pe-PM, and Pec;c are portions of the full covariancematrix computed by equation (125) above. Only the square roots of the diagonal
elements of PRAC are required in km and km/sec. These are converted to meters and
mm/sec for plotting.

The corrections and standard deviations for the two pole coordinates are con-
verted to km at the Earth's surface by multiplying byEaargh and then to meters for
plotting. The correction and standard deviation for At are converted to msec/day.

TOTAL CLOCK OFFSETS

The current state satellite time and frequency offsets from GPS time and fre-
quency are computed by adding together the nominal clock offsets and the current
state solved-for clock correction at t., i.e.,

AIr 0 ,il(t1 ) = Ar(t 1)+AdtJ 1  (135)

Ai 7.oj(t1 ) = A;"(tj)+ A;(tj) (135)

The nominal clock may contain jumps and is computed in the Filter at each mini-
batch step. The total satellite clock offsets can be computed in both the Filter and
Smoother. The SATRACK project requires the Smoother-derived total clock offsets
for both the satellites and stations. The values for the stations are obtained using
parallel computations.

RESIDUALS AND SIGNAL-TO-NOISE

Residuals after fit are computed in the Filter for each mini-batch interval by
linear adjustment of the original residuals, i.e.,

(O-C)adi. = (0-C)' -- A'AXi (137)

where A Xj is the solution for all states and A and (0-C)' were saved before being
whitened and decorrelated. The sipnal-to-noise ratio is defined as the square root of
the weighted sum-of-squares of residuals divided by the number of observations. For
each mini-batch interval it is computed after fit by

= "-I uV /mI(S/N)j(o(-C) = (138)
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where 0 oba is the actual sigma used (may be different from the input value because of
the minimum sigma override) and Mj is the total number of observations processed in
the jth mini-batch interval. The signal-to-noise ratio for each mini-batch interval in
the Filter is also available without computing adjusted residuals as a by-product of
the square root information implementation. The e vector in the information array
after measurement update is related to the signal-to-noise as follows:

(S/N)j(Filter) = ( i(139)

Residuals and signal-to-noise after fit from the Smoother for each mini-batch
interval are obtained by reprocessing the same observations used in the Filter. This
is done by evaluating the observation equations using both the nominal and solved-
for clock information, tropospheric refraction corrections, updated station coordi-
nates, propagated trajectories (described in the next section), and updated polar
motion information. If the corresponding Filter execution used previously computed
total clock offsets for the satellites, this same information is used in generating
residuals from the Smoother. Equation (138) is used with (0- C)add. replaced by
(0- C)sr. to get the Smoother signal-to-noise ratio (S/N)j(Smoother) for each mini-
batch interval. Then the overall Smoother signal-to-noise ratio is computed by

N 2
E MJ{(S/N)J(Smoother)J
j=0

Overall S/N (Smoother) - (140)
N

i=0

where N + 1 is the number of mini-batch steps (corresponds to to thru tN). The
number, mean, standard deviation, and RMS of residuals for the entire fit span by
satellite, station, and overall for each data type are computed. Residuals are
converted from kilometers to meters for plotting. Residuals are also computed for
observations not processed in the Filter because they were tagged, did not pass the
elevation angle tolerance test, or were deleted by pass number. On option residuals
for range difference, differenced range, and doubly-differenced range data can also
be computed if range data for the same stations were processed in the Filter.

TRAJECTORY PROPAGATION

All orbit-related parameter corrections are transformed into inertial position
and velocity corrections at each trajectory timeline using linear propagation tech-
niques. These corrections are added to the reference trajectory positions and veloci-
ties at each timeline to produce the propagated trajectory. Earth-fixed position and
veloc. •y are obtained by transforming these improved inertial coordinates using
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improved values for polar motion if also solved for. The propagated trajectory span
normally corresponds to the fit span with at least 4 extra timelines added on both
ends to accomodate the interpolation method. However, in the case of no orbit-
related p parameters being solved for ("batch" mode), the propagated trajectory is
identical in length to the reference trajectory (except it has fewer extra timelines at
each end) even if the fit span is a subset of the trajectory span. Also in this case the
partial derivatives and other quantities (primarily solar radiation pressure model
related items) on the original reference trajectory can be copied to the propagated
trajectory if required. All satellites are processed simultaneously. Improved initial
conditions required for integrating new trajectories can be computed after
propagation is completed as described at the end of this section.

The corrections to inertial position and velocity at a given trajectory timeline
T, are computed as follows:

ar(Te) e-( Te) dr(Te)
&r(Te)- AKR + - AGj + - AeJ (141)MRs(tj) W-4(t) do

ar(Te) dr(Te) 8r(Te) r(Te) ar(Te)
+ -ARPj + -ATIJ+ -AT2,+ -APMj + -AGCj

aRP dT, aT2 aPM dGC

a (Tt) o rte) c(rt)
A e) -AKR + -AG. +- Aej (142)

aKR(tJ) a(t,) do
ai'(rT) dV(rT) di(Te) c(Te) clk(T e)

+ ARPj + -- AT, + - AT2 + A &PMJ + - AGCJ
aRP d8T aT2  dPM dGC

where the orbit-related parameter corrections at t0 are used if Te <to, the corrections
at t, are used if tj.Te<t.,+i, and the corrections attN are used if TeL>tN. The partial
derivatives of position and velocity with respect to orbital elements, radiation pres-
sure, thrust(s), polar motion, and gravity coefficients are the same as those defined
in the SOLUTION AND DIAGNOSTICS section except they are evaluated at Te.
The partial derivatives of position and velocity with respect to stochastic radiation
pressure and gravitational acceleration parameters are the same as those defined in
the STATE EQUATIONS section with t.÷ 1 replaced by T t (equations (22) and (23)
for KR and equations (29) and (30) far G). TPhese partials are zero ifTe= t This is a
result of the pseudoepoch state formulation of the equations. If a Filter 4batch" mode
propagated trajectory is being created the orbital element and orbit-related y param-
eter corrections at tN are u at all trajectory timelines. If a Smoother propagated
trajectory is being created the orbit-related y parameter corrections at tN are also
used since no smoothing of these corrections is possible.

The improved inertial position and velocity at a given trajectory timeline are
then given by

rtq,,(r.d(T) = rr.(Te) + Ar(Te) (143)

fiapnwd(Te) = I&,f(T?) + AITt) (144)

55



NSWC TR 87-187

The improved Earth-fixed position and velocity are then given by

ri(Te) = ABCD(Te)rlm•,p,•Te) (145)

rEjF(Te) = ABCD(Te)iImpuqd(Te) + A WBCD(Te)rlmpovd(Te) (146)

where W @ 0 0 (147)
(0 0 0

When propagating a trajectory based on the Filter corrections the improved polar
motion in ormation is used. For p and q the corrections at t, are used at trajectory
timelines such that tL s Te < tL + 1. For At the same interval applies and the At
correction is converted to a correction to At by multiplying it by Te- to.

Improved initial conditions are computed if required after trajectory propaga-
tion is completed. For each mode of operation the computations are slightly differ-
ent. In all modes the improved inertial position and velocity are obtained by inter-
polating off of the propagated trajectory at the selected times. In the'"atch" mode
the ARPN values are aded to the nominal radiation pressure parameter values to
get the improved radiation pressure parameter values-the same for all initial
condition times. A similar computation is done for thrust parameters. In the
"Filter" mode both the AKR, andARP? values just before the time for initial condi-
tions are added to the nominal radiahion pressure parameter values to get improved
values. A similar computation is done for thrust parameters. In the "Smoother"

mode the ARPN values and the average AKf, values i=0 are both added

to the nominal radiation pressure parameter values get improved values. These

radiation pressure parameter values would normally be used to predict a reference
trajectory for a future span. This is why the average stochastic radiation pressure
corrections are used. The thrust corrections are added to the nominal thrust values
to get improved values. Also the gravity coefficient parameter corrections are added
to their nominal values to get improved values.

SATRACK COVARIANCE MATRIX GENERATION

Special covariance matrices are required for the SATRACK application of the
MSF/S system of programs. These matrices relate 8 parameters (position, velocity,
time offset, and frequency offset) for each satellite to the same parameters for every
satellite at a given time ( intersatellite covariances) and at up to three different
times (intertime covariances). The full covariance matrix required is structured as
follows:
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8NyV 8NSv 8NSV

PII P12 P13 • 8NSV

- -. ...... - ------ (148)

PSA TRA CK - P21 P22  P23 8Nsv

P31 P 32 :P33  8S

where the subscripts refer to times T1, T2, and T3 and Nsv is the number of satellites.

P, , P22, and P3 3 are symmetric submatices and P21 - P•, P 1 = P13, and P32 = Pjr.
Each submatrix is further divided into 8 X 8 blocks where blocks along the diagonal
relate a satellite to itse!.'either at the same time or at two different times. Each 8 X 8
block above or below the diagonal blocks in each submatrix relate one satellite to
another satellite either at the same time or at two different times. The diagonal
submatrices P I, P22 , and P 33 are computed exactly but the off-diagonal submatrices
P12 , P1 3 , and P23 are approximated in such a way that they would be exact if the
process noise terms were zero.

As indicated in Figure 3 in the TIM ELINE DEFINITIONS section, the times
of interest T1, T2, and T3 may not be exactly on mini-batch steps. Each T. is

associated with the mini-batch interval such that TmC ( .. , tj +(ti, 2 2 J

Let R-'(Tmn), m = 1,2,3 denote the R."matrices for these mini-batch times. Each
matrix is of dimension NTOTX NTOT and is upper triangular. For each time Tm a
state transition matrix (ý(Tm) is defined as given below. This matrix maps the
parameter corrections at t into corrections in position, velocity, satellite time offset,
and satellite frequency offset at Tm.

÷(TK) R: G 0 0 'Fe 0 !RP, T :PM:G 8Nsv (149)
I~~ 

C )I! I

corresponds corresponds corresponds
to CR to CMS to S

Columns are present only for the parameters included in R"(Tm).
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3 3

6 KR, 0 0

2 0 0 0

0 KR, 0 0

KR =9 0 0 (150)

8Nsv X.3Nsv 0 0 KRJ

0 0 0 "".,K ,

0 o

G and RP have the same size and structure as KR

KR, partials of position and velocity at T. with respect to stochastic
radiation pressure parameters at tj given by equations (22) and (23) in
the STATE EQUATIONS section with tj+ 1 replaced by T.

G, partials of position and velocity at T. with respect to gravitational
acceleration parameters at t, given by equations (29) and (30) in the
STATE EQUATIONS section with tj. replaced by T.

RPi partials of position and velocity at tj with res ect to radiation pressure
parameters obtained by interpolating off of the trajectory at T,

3 3

0 0 0

2 T,• 0 0

o 0 0 0

S= 0 T2  0 (151)
8NSv X 3Nsv 0 0 0

0 0 Z3

"*0

0 XN8 V

, T= 1 =1,2,...,Nsv (152)
\T. 1 0
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4,. 0 0

21 0 0 0

0 .,l 0 0

0 = 0 0 0 (153)

8NSV X 6Nsv 0 0

0 0 0

0 o

= partials of position and velocity at Tm with respect to orbital elements
obtained by interpolating off of the trajectory at T.

3

01 00
T2  (154)

T = 0

8Nsv X 3NNT7 TNT

0 0

The rows for each T, are determined by which satellites have thrusts.

Ti = partials of position and velocity at T. witV respect to thrust computed
using equation (79) in the Range Partial Derivatives subsection
except evaluated at T, and all 6 rows are required
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NpM

/PM, )
o }

PM2

0
PM = PM3  (155)

8NSV X NpM 0

PMNSV

(0

GC has the same size and structure as PM

PM, = partials of position and velocity at T. with respect to polar motion
computed as in equation (80) in the Rante Partial Derivatives sub-
section except evaluated at Tm, and -replaces r in computing the velocity
partials

GCi = partials of position and velocity at Tm with respect tU gravity
coefficients obtained by interpolating off of the trajectory at T,

The following product matrices are then formed:

S(Tm) = *(Tm)R"(Tm) m =1,2,3 (156)

8NSVXNTOT 8 NsvXNToT NTOTXNFoT

Then the covariance submatrices of PSATRA•CK are given as follows:

P 11 = S(T,)S(TI)r (157)

P 12 = S(T,)S(T2). (158)

P13 = S(TI)S(T3)T  (159)

P22  = S(T2)S(T2)T  (160)

P2 3 = S(T2 )S(T 3 )T  (161)

P33 = S(T3)S(T3)T  (162)

Each is an 8Nsv X8Nsv matrix where the eight parameters are position, velocity,
satellite time offset, and satellite frequency offset in units of km, km/sec, psec, and
ppm respectively. These matrices are then scaled to be in units of m, m/sec, sec, and
sec/sec.
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The purpose of this appendix is to describe the assumptions and definitions
made in adopting the specialized form of the state equations for the orbit-related
parameters in the MSF/S system. The first simplification involves assumptions
about the white noise sources driving the estimated orbit-related states and affects
the form of the process noise covariance matrix. The second simplification involves
the definition of the pseudoepoch state variables and affects both the state transition
matrices required for the Filter propagation step and the observational equation
partial derivatives required for the Filter measurement update step.

To simplify this discussion, consider the set of state equations for a single satel-
lite that includes current state position and velocity parameters, z, and one stochas-
tic orbit-related parameter, p. The system of stochastic differential equations
describing corrections to these parameters is given by

SB, Or 8p w
=+ c (Al)

1;
where B - , i.e., 8p is modeled as a first-order Gauss-Markov

T process (see Appendix B)

p- - partial derivatives of velocity and acceleration with
ap respect to p

air,
F. - - = partial derivatives of velocity and acceleration with

dx' respect to position and velocity
C

and it is assumed that changes in r' cause negligible changes in p. Also each w com-
C

ponent is a white noise process. Assume that w2 = 0, i.e., there is no white noise driv-
ing the 8z' states directly. Then the discrete system equivalent to equation (Al) is
gi-ien by

A =. or+ (A2)
\Ar' V""• vX-

(t+; i +-tI)

where M - T U (see Appendix B)

8x'(tj++)
V•, (tj++, t±) = partial derivatives of position and

ap(tj) velocity at tj+1 with respect to p at tj

dr,'(tj +1)
VVj V ;(tj+ , t+ ) Q - partial derivatives of position and

8x'(t1) velocity at tj+ 1 with respect to position
and velocity at tj
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and w, ( ;;or \V/

W2 V;(kv,(tj) v•(',,tj)

a K- (~ t :(A3)

Jtj

Therefore, w2 is a non-zero vector as a result of the discretization process even though
the white noise driving the 8z' states in the continuous system is assumed to be zero.
The state equations adopted to simplify the square root information filter/smoother
algorithms also ignore e w2 noise contributions. However, the Ax states are still
smoothable since they are dynamically related to the Ap state through the Vp'
matrix. This assumption results in the absence of both a process noise covariance
matrix for the six orbit states and a process noise cross-covariance matrix between
these six states and the stochastic orbit-related states. Since the orbit states are non-
stochastic (not p parameters), a considerable savings in array storage results. This is
the case because the information array required for the Filter propagation step
(equation (111)) includes two rows and columns for each p parameter. This reduction
therefore allows more satellites to be processed simultaneously.

Expanding the state equations given in equation (A2) to include all orbit-
related stochastic states, Ap, and orbit-related bias states, Ay, and again assuming
w2= 0, gives the following state equations:

AX = ý V" V;'x •a' + 0(A4)

=y (0 ) (ZY)+(0)
where M = diag e 'Ei

Vp'j = V,(tj +1, tQ) = partial derivatives of position and velocity at tj+I
with respect to p at tj

V',j = Vx(t +1, tQ) = partial derivatives of position and velocity at tj +
with respect to position and velocity at tj

and V;j = V;y(tj + 1, tj) = partial derivatives of position and velocity at tj I
with respect to y at tj.
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The subset of these equations involving the Ar states is given by

Air(tj+ ) =V, (tj.+, t,) Ap(tQ) + V" QJ+ , tj) Az'(tj) + V' (tj÷+, tj) Ay( t) (AS)

Define the pseudoepoch state variables Azj by

Ar(tj) = V. (tj, To) Azj + V, (tj, TO) Ay(tQ) (A6)

where V, (tj,To) = partial derivatives of position and velocity -t tj with respect to
either orbital elements or position and velocity at the trajectory
epoch To

and Vy (tj,To) = partial derivatives of position and velocity at tj with respect to
the orbit-related bias parameters at To.

Substituting for Ar%(t) and Axr(tj+,) from equation (A6) into equation (A5) results in
the following equation:

V,(tj+ i,To) Axj+I + Vy (tj+i, To) Ay(tj+1 ) (A7)
V. (tj+ It Ap(t1) + Vx' (tj+,, tj)Vx(tj,To)Azj + V•(tj+,, tQ)Vx(tj,To)Ay(tQ) + Vy' (tj+ 1, tj)Ay(tQ)

Multiplying both sides of equation (A7) by V'4(tj+i, To) and rearranging terms
results in the following equation:

AX+I -= V'(tj+1 ,To) V.(tj+ 1,tj)V(tj,To)Axj+ V'(tj+I, To)V(tj+I,t1)Ap(tQ) (A8)
+ V1

1(tj+1,To)[(V'(tj+I,tQ)Vy(tj ,To) + V'y(tj+I,tQ))Ay (t) -Vy (tj+1,To)Ay (tj+ I)]

Based on the properties of state transition matrices, the following identity exists:

V'(tj+ 1 ,t1)V(tj,To) = V. (tj+ ,To) (A9)

Therefore the matrix multiplying Ax-in equation (A8) reduces to an identity matrix.
Also, based on the properties of state transition matrices and Ay(tj+ 1) =Ay (tQ) from
equation (A4), the following identity exists:

[V' (tj+ I,tQ)Vy(tj,TO) + Vy(tj+ I,tj)1 Ay(tj) = Vy (tj+ 1,To)Ay(tj+ i) (A10)

Therefore the last term in equation (A8) vanishes and equation (AW) reduces to:

Az+•= = Axj+ Vx(tj+ 1,To)V, (tj+,,tj)Ap(tj) (All)

= Axj+ VAp(t')

where Vp, = V,(tj+I,To)Vý(tj+I,t) (A12)
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Therefore the state equations given by equation (A4) and the pseudoepoch state
variables definition given by equation (A6) result in the following simplified state
equations for orbit-related parameters:

drvtv =0 A 0 (A13)

(AY( 0 1 (AY)0

To be consistent with these equations, the observational equation partial
derivatives required in the Filter measurement update step must be computed with
respect to these variables. For a given observation at time tabs, the partials with
respect to the orbit-related p parameters involve the Vp' (tob,, tj) matrix, the partials
with respect to the pseudoepoch state orbit parameters involve the V, (tobo, TO)
matrix, and the partials with respect to the orbit-related bias parameters involve the
Vy (tbs;, TO) matrix.
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APPENDIX B

FIRST-ORDER GAUSS-MARKOV PROCESSES
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The stochastic differential equation defining a continuous first-order Gauss-
Markov process is given by

8j - (Bi)

where t = eeorrelation time (seconds)

w = white Gaussian noise of mean zero and spectral density q, i.e., E(w) = 0
and 9[w(t)•s)] =q8(t -s).

The continuous linear variance differential equation corresponding to this stochastic
process is given by

2
bra -- o+q (B2)

Setting the variance rate, 6-, to zero and solving for oi gives the steady-state variance
for this random process as

c WO = E(8P(t)) = jq (B3)

Also the mean value, p, of this process is zero, i.e.,

p = E(fp(t)) = 0 (B4)

The one-sided power spectral density for a Gauss-Markov process is given by

V _W2 (B5)

where j - and w = 2nf.

Its corresponding autocorrelation function is given by

'*(t) = o'e-1 P't (B6)

A Gauss-Markov process is used to approximate a band-limited process with a flat
spectral density over this bandwidth.

The discrete equivalent of this continuous process is given by the first-order
stochastic difference equation

Apj, = 4Aoj+wj (B7)

where i = state transition matrix

1ws} = white Gaussian noise sequence of mean zero and variance Q, i.e.,
E(wj) = 0 and E(wwk) = Q84-4).
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4 satisfies the following differential equation and initial condition:
1- (B8)
T

)= 1 (B9)

The solution to this differential equation is simply

(tj+,-tj) At

X= * ' (BO)

The process noise variance, Q, is then given by

(tj+ /tj+ 2(1-tj)

Q ) *(A .tj)q4 rT U,t1 )LA q T

T q-e = (Bll)
22

(tj

For x= , the stochastic differential equation (B1) reduces to theit for a random

walk process, i.e.,

ep = w (B12)

The discrete equivalent is then given by

AP,+i = Apj+wj (B13)

For this case Q is derived starting with equation (BI 1) as follows:

Q mli q- 1- T
t--*. 2

q ,1M I I mAt + -1-
T -*® 2 2 (B14)
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q1 Un(t+ constanta()--q Eia t+ €mot

=qAt

If, in addition, q = 0, then the stochastic differential equation (B 12) reduces to that

for a random constant, i.e.,

dp = 0 (B15)

The discrete equivalent is then given by

Apj+ = Apj (B16)

and Q = 0 (B17)
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APPENDIX C

APPROXIMATION OF PARTIAL
DERIVATIVES OF POSITION AND VELOCITY

WITH RESPECT TO STOCHASTIC ORBIT-RELATED STATES
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The partial derivatives opoeltion and velocity at t with respect to the stochas
tic radiation prmeure and oravtational acceleration parameters at t ae approxi-
mated using a Taylor ries eapanson method. Them partials only ave to be
accurate foi values of t S tj , i.e, for a time span of at most one mini-batch interval
(usually s 1 hour). Using pta desinat the stochasti parameters (either 4a or G)
and r and r to designate position and velocity rspectively, the system of differential
equations defining the corrections.$ the parameters (with the stochastic terms set to
zero) used to derive the state transition matrix containing the required partial
derivatives is given by

8r 0 loll(CI

F, G 0 M

where B = diag =i.e., each component of 8p is modeled as an
"i / ndependent G auss-Markov process

(see Appendix B)

F, - = partial derivatives of acceleration with respect to p

ap

and G - = partial derivatives of acceleration with respect to r

It is assumed that changes in r and ý cause negligible changes in p and that
acceleration is not a function of velocity.
Define

F (DO) (C2)

FI)
where F2  (:- ( C$1

and F3  = ( (C4)

The state transition matrix, 4(t,tQ), is the solution of the following system of

differential equations and initial conditions:

4(ttj) - F(t)qO(t,t1 ) (C5)

4gtj,t,) -- I (C6)
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Approximating (t,tj) by a second-order Taylor series about tj and assuming k = 0,
i.e., F is constant for short time intervals, results in the following:

(t-t()'

= I+ F-(tt)+(ttXt -t) tj)(t,t) + , )

(t -zj)"
- 1+ F(tj)(t-t,)+rv(zj)2

where C(t)) =CS)
F3(t)F,(Z) + F2(tj)B Fpt,

Partitioning 4 the same way that F was partitioned in equation (C2) gives
_/(tMtj) p(~•0 )

(Igttj) • (ttj)(C9)

Then (Lt- t•)Thn (t,t) • I+B(t-tj)+i ( (CIO)

However, in the limit as the number of terms increases, the right-hand side of this

expression converges to diag t ) so no approximation is necessary. Also,

- (t - tJ)
l3(t,ti) •-6 1+ Fat {- ti)+ P2 (tj) 2(Cll)

2

This approximation is also not required since 3(t, t,) is just the partials of position
and velocity at t with respect to position and velocity at tj which can be obtained
exactly by proper manipulation of partials interpolated oflof the trajectory.
Therefore, the only submatrix ofit(t,tj) requiring approximation is t2(t,tj) and it is
given by

*2(t,tj) -- F2(t%)(t - ti) + (Fj(t,)F2(t4) + Fa(t)) 2 (C12)

= ((tJt-tJ)+ (F t)+ (t)JJ(-t)

0 (tj 0(0(C
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Therefore

ar~t) (t -t V
-_ ..6 Ft(tj) (C13)

al~t,) 2

(t)(t-

and -- s- FI(tjXt-t)+FI(t•)B- (C14)ap(t,) 2

For the radiation pressure (MR) parameters, F,(t,)= is computed as
follows: axit(tj)

KROuG*+KR, 10 l'&ahape cM KRJ

--R, KelO":shae Sin KRI (C15/

ait,) ax 10,' ape cOS KR, -SRi"Aape ain RR, (

OKR(t,) =RS 0 IO'mha snKpe , KegIO-12h" COS KRS (C16)

as0 0

where R, = matrix required to transform between the body-axis and inertial
Cartesian reference systems obtained from the trajectory at tj

At o,-KRZlO-"&'W/ a2ec Kit. M as
as = as , = - (C17)

KR1  KR,

= inertial accelerations due to the radiation pressure model only and not
including y-axis and KR, contributions, given in the body-axis x and z
directions respectively at tj.

ay = inertial acceleration at t. due to radiation pressure in the body-axis

a. directions obtained from the trajectory

KR = nominal radiation pressure parameter values from the trajectory

shape = fraction of the sun's disk unobstructed by any eclipsing body (Earth,
Moon, or both) obtained from the trajectory at tj

Atj)
For the gravitational acceleration (G) parameters, FI(tQ) - is computed

as follows: aG(t)

rt) = RRACG (C18)
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ARtC) -A (C19)
acutj)

where RRAC = ( xX (C20)

= matrix required to transform between the RAC and inertial
Cartesian reference frames at t,

rV= position and velocity at t, interpolated off of the trajectory
( denotes a unit vector)
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APPENDIX D

CLOCK MODELS
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The current state satellite clock otffets are modeled as a third-order linear
system with white noise inputs given by the following stochastic differential
equations:(1 0 0 8) ( ) + (ED (DI)
where G' = frequency drift

8 - frequency offset

8C time offset

W white noise process of mean zero and spectral density q1, i.e.,
E(W(t)) = 0 and E(w•'(t)w" (3))-=q• 6(t-3), i =1,2,3

The discrete equivalent of this continuous model is given by

Ai1 0 0 A7

A;) = At 1 0 (A Q+(W (D2)
\A2 At 1 1W P'J

where A t tj+l -tj (D3)

(w~j} white noise vector sequence of mean zero and covariance
imatrix Q derived as follows:

A~t

Q -A 1 0 0 q2  0 11 d (D4)

0 2

q, qA qj •

2
=QIk qjý A q2 q, X +q2I A

Dq-- +3q2  qi-- ±q 2 A2 +q 3

0 ( 2 2 4
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qAt A•t- At 3

- At 2  At 3  At4 + q At 2- l- q 1•- + q2At ql 2--
2 3 8 2

At 3  At 4  At 2  At 5  At3

\q- q 1 - + q2 - qi- + q2- + qAt
6 82 20 3

In terms of the pseudoepoch state clock offsets actually implemented in the
MSF/S system, the model is given by(o WO + W20  (D5)

where the subscript o denotes a correspondence with the fit span epoch, to, and
{wj} = white noise vector sequence of mean zero and covariance matrix Qo, derived

from Q as follows:

(A7o /A1 ,ad~ 1 0 0

Let Aro = Aio ,Ar A; , (2) and yj tj-to 1 0

SAro) Cc W3 ( t o2 tj -- ti 1

Then Arj+. = 4ýj, Aroj,+ =,tj+ iArom + 4j+i wj (D6)

The state transition matrix in equation (D2) is equivalent to 4j+1 j so that
equation (D2) can be rewritten as

=j + I =pj + I tj A4 '+ Wj (D7)

Combining equations (D6) and (D7) results in the following equality:

t+1Aro +4b+ wj = tj+,IArj + wj (D8)

Multiplying each side by its transpose gives

+I Aro, A&o,+, +4 W+, I +(b+ + 4 I+,Aro, w Ci +I + 4b + o, I rj = (D9)
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Taking expected values and replacing

E(Aro, TAvT) by pod,

E(wjrw) by Qo0

E(Aro, wj, E(wjAT), E(Arj wj1), and E(wj A') by 0,

E(Arj A4T) by Pj,

and E(wj wj ) by Q gives

(Pi +I PO f+1+4ýj+iQO',t4+, = pj+, p, ý'~ j44+,+Q (D1O)f

Multiplying each side of this equation on the left by •4• + and on the right by4; 1 and
substituting Po, for +,'Pj4tjgives

POj +QOj = PO'[+ C,'+IQC44+I (Dll)

Therefore Qoj = 4+ 1 Q t4"+ I (D12)

The square root of Q. is actually required by the Filter algorithm. The upper

triangular square root, R, of Q' such that

Q-'=RT R or Q=R-R-r (D13)

is first computed using Cholesky decomposition (see Appendix E). Then combining
equations (D12) and (D13) gives

Qo j=C +R-1R CT+, (D14)

Inverting gives

QA'j 44j+ 1 RTR4)j+1 (D15)

Therefore the square root of QO' isjust R qj+l where R is invariant (a function of At
only) and tj+ is lower triangular. The product Rij+ I is a full matrix and must be
upper triangularized using Householder transformations (see Appendix G) before
being used in the propagation array.

To be consistent with the clock model states as given in equation (D5), the
observational partial derivatives required in the Filter measurement update step
must be computed with respect to these pseudoepoch state parameters. For a given
observation at time tob,, the partials must therefore involve the third row of the (ýj
matrix with t, replaced by t.b,.
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The current state station clock offsets are modeled as a second-order linear
system with white noise inputs, i.e., the same as the satellite clock model except that
all &8-related terms are absent. For the discrete version of this model the Q matrix is
given by

(j~ At2
q1A\

QA At3  (D16)

where q, = white noise spectral density for the continuous frequency offset state, Sr

and q2 = white noise spectral density for the continuous time offset state, 8r.

The ýj matrix is given by

4) =D(D17)(ti-to 0)

With these definitions, all of the discussion of the satellite clock model above applies
to the station clock model also.

Assuming thatq, =0 for the satellite clock model, i.e., frequency drift is
modeled as a random constant over the entire fit span, the model for the frequency
offset state, At, is equivalent to a constant plus the integral of the frequency drift
state, AF, plus the integral of white noise. The model for the time offset state, Ar, is
then equivalent to a constant plus the integral of the frequency offset state, At, plus
the integral of white noise. Therefore, the noise terms integrated in determining the
time offset state are integrated white noise (random walk frequency noise) and white
frequency noise.

The spectral densities of these noise terms can be directly related to the Allan
variance which is used to characterize the statistical frequency fluctuations of

atomic and crystal clocks. The Allan variance,oyuW, is defined by

*2 1
U -g) - E[(Yk+1(9)-9k(4)Y] (D18)2

1 tk+ I

where Yk(f) = - y(tOdt = average fractional frequency over g seconds (D19)

Jtk

4(t)
and y(t) - = instantaneous fractional frequency (D20)

2n Vo
= rate of change of phase 4b divided by 2n times the

nominal frequency vo.
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The Allan variance corresponding to the model with q, = 0 is given by the sum of the
individual Allan variances for each noise source as follows:

8 q3  q2 t
Y(r) - + - (D21)

3

The first term corresponds to the white frequency noise and the second term
corresponds to the random walk frequency noise. This is depicted in Figure D1,
which is a typical plot of the square root of the Allan variance. Flicker noise, which
corresponds to a horizontal line on this plot, cannot be represented exactly by this
model. However, the white noise term (with spectral density q3) can be chosen to
exactly match the left-hand portion of a theoretical Allan variance curve. Then the
q2 spectral density can be selected optimally so that the minimum point of the
combined curve lies on the flicker noise portion of the theoretical curve.

10.11
2(j Q3 ___

i; 3

10-12 WHITE NOISE
/l RANDOM WALK NOISE

10-13 _F _ ...... LICKER
""NOISE

-I I I I

10 103 10, 105 106

AVERAGING TIME & (SECONDS)

FIGURE DI. CORRESPONDENCE BETWEEN CLOCK MODEL SPECTRAL DENSITIES
AND ALLAN VARIANCE
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APPENDIX E

CHOLESKY DECOMPOSITION
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Lower triangular Cholesky decomposition is used to compute the square root of
the inverse of the process noise covariance matrix, Q, for each clock model, i.e., Q-" is
factored into the form RrR where R is upper triangular. The algorithm actually com-
putes a lower triangular matrix L = Rr, i.e., Q-1 = LLr. Let q.,cQ'(n X n) and

Wnj cL(n ii), n = 2 or 3. Then L is computed as follows starting with J = 1:

For column j define

fjj = NO, (El)

If j = n, the procedure is complete.

Otherwise, for each subsequent row h define

kj q = k= j+ l...,n (E2)

This completes the definition of this column of L and the Q- matrix is then
adjusted as follows:

For all subsequent columns and all subsequent rows define

qik = qi,k,-?ij1,k = j+ ...,n I = &...,n (E3)

Then go to the next column, j+ 1, and repeat this procedure.
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APPENDIX F

WHITENING AND DECORRELATION OF RANGE
DIFFERENCE OBSERVATIONS
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Range difference observations are derived by one of two measurement tech-
niques, both of which result in pairwise correlated observations. The first technique
involves differencing two consecutive accumulated Doppler counts provided that the
count was continuous, i.e., no losses of lock or cycle slips occurred during this inter-
val. The second technique involves differencing two consecutive pseudorange meas-
urements. In either case, two consecutive range difference observations (assuming
no losses of lock or cycle slips for the Doppler-derived type) have one measurement in
common and are therefore correlated.

Let RD represent a measurement-noise-free range difference observation and
let ADR represent a noise-free Doppler count type measurement or pseudorange
measurement. Then from three consecutive ADR measurements, two RD
observations can be derived as follows:

RD,+vj' = (ADR 1 +v• ) - (ADRo+va) (F1)

RD2 +vj = (ADR 2 +vý) - (ADRI +vl") (F2)

where vi'represents the zero mean white measurement noise of variancecAD)R on the
ADR measurements and v! represents the resulting zero mean measurement noise on
the RD observations. The RD observation measurement noise variances are derived
by s uaring each side of equations (Fl) and (F2) and taking expected values to get
the ollowing:

2 2 2

ORD, = E(vj')= E(v )+ E(vD) = oADR, + oADRO (F3)

oRD 2 = E(vj)= E(vj') + E()= OAD + GADR 1  (F4)

The measurement noise covariance is derived by multiplying equation (F2) by
equation (F1) and taking expected values to get the following:

2

ORDJRD, = E(vNVI) = -- E(V'' = -OADRI (FM)

Then the correlation coefficient is given by
2

PRD,, 2 s =- ,, -R - -,, (F6)
(oR6, ORDR)' ORD, URD 2

Let a, = ORD, and pi = PRD,RD,,. Then the measurement noise covariance matrix,
P.., for a sequence of m pairwise correlated range difference observations is given by

2

P1010-2 p22 P20203 0

-........... . (F 7)..P 0 P20203 (13.... . . . . !

0in-I P'n-i CmR-1 0 M

Pm-F Or-!3 O AIL
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The corresponding linear measurement model for these m observations is given by

,r'=' AX+ v, (F8)

where E(v) = 0 and E(v' v, I) = P.,. To whiten and decorrelate these observations,
i.e., to transform the observations into an equivalent set of independent observations
each with unit variance, do the following:

Factor P.. into the form LLr where L is a lower triangular matrix. Then transform
the linear measurement model given by equation (F8) by multiplying each side by V"
to get

L'zI = L-'AAx+L'vl (F9)

or z = AAz+v (F10)

where E(v) = E(LUv') = L"E(v')=O (FlM)

and E(WT ) = 9(L-'v'v'T Lr) (F12)

= L' E(v'voT)L"r

= L'P0 , L-r

= L-ILLTLr

=1

Therefore equation (FIO) is the linear measurement model for the equivalent set of
uncorrelated, unit variance observations required for the Filter measurement
update step.

The banded tridiagonal matrix, P,., has a lower triangular square root, L, of theform

010
PI5 62 0

P2 83  
(F13)

L =

0

Then P,, is also given by
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8o; OI,, o

@IP, 8•+p• 6ap 0a) oPI 0,+ ,,

0 02p P2 0.'+~
(F14)P,. LLr -

"0,.*. 0,,. + Pm-i O0i•.1•.

"Orn..zPrn., O'+ P'../

Equating terms between the matrices given in equations (FI4) and (F7) gives

ai = 01

0 1P i = P 1 o102 -' P -

0 2+ = o0 02 = ( 02- p ,) (F 1

P20203
02P2 = P20203 -+ P =-

;+ 142= o -- 3 = (o0-p P

or, in general,

pOaon+I

PR n = 1, 2, ... , m-I (F16)
1+1 = (:+z-P:)01 0

The L-1 matrix is not actually computed but the transformation given by equation
(F9) is done recursively as follows:

Let c, represent z', vl, or any column of A'. Then v Le is given by

cj ~ 81 C

4 PI 02 0 C2

• = P 03, Cj (F17)

Ca\ 0 p.," aC�F
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Individual equations are then given by

©•= 06 CJ

Ci Pic) + OSCe
c!= pc2 + 03c 3  (F18)

C4 Pm1,- + as," cm

Solving those equations recursively for the ci's then gives

C1 = cl/a
CS = (c4-PICIVa)/
C3 = (ci-PAO )/3 (F19)

Cm =

F-6
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APPENDIX G

HOUSEHOLDER ORTHOGONAL TRANSFORMATIONS
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This appendix is not intended to provide a detailed ezplanstion of Householder
transformations and their properties. Th reader is referred tp Chajpter IV of refer-
ence 4 for this exanatlon. However, two propertes of thee transformations ex-
ploited in the IStimplementation will'te dituseed below, First it will be shown
that the transformaion defined by equations (10&-110) in the MEASUREMENT
UPDATE subsection of the FILTER ALGORITHM section does zero out the below
diagonal elements in the first column of the arbitrary m Xn matrix R.

For the first column, equation (109) gives

= - R(1,1)-s" .R~i,1)

a*(1 R(291) : (01)

- I

Squaring equation (105) gives

38 = lR0,1)V (02)

Substituting equation (02) in (01) gives

I 1
y1 (s"-s,(z,1))= --(s-R0,l)) (03)a*(1) u(1)

Substituting in equation (03) for L-0) from equation (106) gives

s-R(1,1)
Y, (G4)R(I,1)-S

Therefore for 1=1, equation (110) gives(R 1) (I)
R(2,1)TJ(R(ij)) = •1,1)-- (G5)

Two properties of Householder orthogonal transformations, are exploited to
reduce the number of computations in the MSFIS implementation. These are given
as follows:

1. If the current column being zeroed out below the diagonal has a zero ele-
ment., the corresponding row for all remaining columns is unchanged by this trans-
formation. u) = 0 for this row in equation (110) so that R(ij) for all columns Idoes
not change. This property allows the Householder transformations required for the
measurement update to be done in two stages (equations (103) and (104)) and saves
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over NY X (NP + N,) words of array storage. Since the Ry array is always upper trian-
gular, this property allows it to be stored and operated on as a one-dimensional array
in equation (104). The Filter propagation step computations are also reduced by
applying this property. In equation (111) the matrix - RM is always upper trian-
gu ar so that only the highest row being operated on in the first Np rows changes as
each column is zeroed below the diagonal.

2. If any column being transformed has zero entries corresponding to all non-
zero entries in the current column being zeroed out below the diagonal, this entire
column is unchanged by this transformation. yj = 0 for this column in equa-
tion (110) so that R(i,j) for all rows i does not change. This property is applied as
described under equation (111) in the PROPAGATION subsection of the FILTER
ALGORITHM section. The Gauss-Markov p parameters were placed first in the list
of stochastic parameters in order to take maximum advantage of this property.
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APPENDIX H

SRIF AND EQUIVALENCE TO KALMAN FILTER
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The square root information filter (SRIF) measurement update equations (equa-
tions (103) and (104)) correspon, ling to the parameter set partitioning implemented in
the MSF/S system are derived in reference 4, section VII.and are given there by equa-
tions (2.6) and (2.7). The SRIF propagation equations (equation (111)) are derived in
reference 4, section VII.3 and are given there in a more general form by equation (3.6)
repeated here as

\R-M R, 0 0 o R; R;, Ro - R-, z

I Rp - Rp~V 0 Rp, kP ztP J =i 0 AP i%3p i,,,,V4 (Hl)

R\XP -RZVP 0 AX Azy- XvY ix 0 AX, Ft ' ?

where AP,,- = PV and RA = k", V1  (H2)

These equations reduce to that used in the MSF/S system with the following
simplifications:

z. = 0 (H3)

i.e., no a priori knowledge of process noise exists except for its covariance matrix,

Yy = 0 (H4)

and V, = I (H5)

because of the pseudoepoch state variable definitions (see Appendices A and D), and

Xp --" 0 (H6)

because the measurement update Householder transformation is applied even if no
observations are present in a given mini-batch interval.

An alternate derivation of the propagation equations can be obtained by
substituting partitioned i and G matrices into the general propagation algorithm given
by equation (2.29) in reference 4, section VI.2 and rearranging the result as follows:

The general form of the state equations is given by equation (1) and repeated
here as

AZ)+I = 4pj AXj + Gwj (H7)

The MSF/S state equations correspond to this form under the following definitions:

Ax = AX (H8)

(AY)
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(M 0 0 ) NP (19

•j = Vp5 1 0 }N., (H9)

0 0 1 NY

C 0 (H10)

0

The general form of the informaticn array being transformed in the propagation step is
given by the following, taken from reference 4, equation (2.29), with zw(i) 0:

Rj) 0 O (H11)

This is equivalent to the data equations given by

R.(j)w, = -v• (H12)

- hj •Gw.+/ij•A z = i--Aj (H13)

For the partitioning done in the MSF/S system Rkj and ij are given by

0 k Ry (H14

ZP\
Aji. (1115)

izy)

Inverting both sides of equation (H9) gives

(M. 0(0

4j = VPjM" 1 0 (H16)

0 0 1

Then hi 4)j and -hjo4G are given by

y='M.) A ) ki (H17)
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-0 R-V,,"M ) (118)

0 )J

Substituting equations (H15), (H17), and (H18) into equation (1113) gives

--(R M-'- R- pVM')wj+(ApM -- RpVM M),pj+, + Rpj Axj + RpyjAyj++ = Ap (H19)

RM' AV R&P" +I'+ Azj+I+ A yj+I = ixj -A xA (H20)

A A +I= iy,- (112 1)

Solving the state equations for w, gives

Wj= -MApJ+Apj+, (H22)

Multiplying each side of equation (1122) by Rw(j) gives

Ru(j)wj= -Ru(j)MApj + Ru(j)Apj +I (H23)

Ignoring equation (H21), since y parameters do not change in the propagation step, and
substituting equation (H23) into equation (1112) and equation (H22) into equations
(H 19) and (1120) gives

- R,(j)M A•p + R,(j)Apj + I - Vw, (H24)
Vp') A Pj +R Axj A+ I + pyj Ayj+! -- = p, (H25)

(R, -AV,)p +A~ AX1J ZP Ay- = A

-A1 , R p +R~ Axj+, +R^, &yj+i = A(H26)

This is a set of data equations for the states Apj, Ap,+ 1, Axj+ ,, and Ay +,, and corresponds
to the information array required for the propagation step in the MSF/S implementation
t"ven by

kp -pzVp 0 (pz Rpy ip 1127)

-0Vp o . i .

The Householder transformation, TP, operating on this matrix eliminates Api from the
last NP + N, rows.

The SRIF algorithm is mathematically equivalent to the standard Kalmar. filter
algorithm. Assume a set of state equations given by equation (1) (repeated above as
equation (H7)) and a linear measurement model given by equation (2) and repeated here
as

zj = AjAx&zj + vj (H28)
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Then this equivalence will be shown for each filter processing step-measurement
update and propagation.

Measurement Update

The Kalman filter measurement update equations are given by

,xj = &xj + Kj(zj-- AjAx,) (H29)

= AAj) (1130)

Kj = PjAj'(Aj PA+I)"= P A, (H31)

where - indicates a predicted quantity and - indicates a filter estimated quantity A
different expression for Axj can be derived by substituting for K, from equation (6 1)
into equation (H29) and using equation (H30) to give

= A= +,+Aj(zj - A,)

=- (I- P, A,"A)Sxj + P'Aj~z(
= Pj[( ^) I AAj) S i+ 1.'j (1132)

-k[P,'- AJAJ AX,+ 41Zi

j P( (jP& + Aj-zj)

The SRIF measurement update equations are given in non-partitioned form by

Aj zj = Rj (1133)

Premultiply each side by its transpose to get( R~ A", 'A ~ .,IH4
7 • TT , < (H34)

12" Zi Aj zj ( (: 6 0 )
Since t "s orthogonal, •tl =I so equation (H34) reduces to

11 AA2+Az) (RRTR
"z+Aj fj + zzR (H35

Equating upper left terms gives

Aj" j + AjAj = A j (1136)

Inverting both sides gives

Rj Rj = (j'j Aj + Aj" A() H37)
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Subtituting P = R"R-" in equation (1137) then gives

'- = (Pj'+ A•'AJ)' (H38)

which is the same as equation (H30) above.

Equating upper right terms in equation (H35) gives

Rj'z+ A'zj =--Rzj% (H39)

Mulitplying z = RAz by Rr on each side gives

Rrz = RRAx (H40)

Substituting equation (H40) into equation (H39) for terms involving alid gives

RFfRA&x + A;z1 = R1 RJAZj (H41)

Since P = RIRT, P1 = RrR so that equation (H41) becomes

Pj A• + Aj zj = PA xj (H42)

Multiplying each side by Pj and regrouping terms then gives

Axj = Pj (PA&x, + Ar z,) (H43)

which is the same as equation (H32) above.

Propagation

The Kalman filter propagation equations are given by

=-jI 'tsv (H44)

Itj= + GQJG T  (H45)

The SRIF propagation equations are given by

N, N, 1

(• (j) 0 0 = (R ) Awx(J) 1(1i) ) N,,T=1.. (H46)

Partition T as follows:

N., N,

T 1= f 
(H47)

T21 t2 ) N
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Using these definitions it follows that

Aj = T2Rj 4 or T22= R,+1 IAj (H48)

T. 1 Rw(i)--T2 sRj IG = 0 orT21 R ,(j) -2 ̂ 4) (H 49)
T21 = T22 RAjtG R~w(j) = Aj + IG R-(j)(H9

Also, since T is orthogonal it follows that

7.S2 T 21 +T 22 T2"2 =1(H50)

Substituting for T22 and T21 from equations (H48) and (H49) into equation (H50) gives

Pre-multiplying by A,+ 1 and post-multiplying by k¶+ I gives

=j+ t'ý G R_'(j) Rkwj G+ itk,ý R] j'4j (H52)

Substituting P = R' RTand Qj = RIw(j) R1w(j) then gives

pi = tjPjJ + GQjG (H53)

which is the same as equation (H45) above.

Also the definitions in equations (H46) and (H47) give

12 Zj = Tj (H54)

Substituting for T22 from equ tion (H48) above gives

A j+I, = z, (H55)

Since z = RAz, this becomes

Aj+I(i jk.z = R + 1),4Azj, = Aj+IEx (H56)

Multiplying both sides by Aj+, 1 then gives

4+,Ixj = A;+, (H57)

which is the same as equation (H44) above.
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APPENDIX I

SRIS AND EQUIVALENCE TO RTS SMOOTHER

I-1



NSWC TR 87-187

The square root information smoother (SRIS) is implemented using two algo-
rithms in the MSF/S system. The first algorithm, called the State Only Smoother,
provides state estimates only. The second algorithm, called the Array Smoother, in
addition provides covariance estimates. Both smoothing algorithms are developed in
reference 4 section X.2 for the general form of the state equations given by eq-%ation
(HU). For the special form of the state equations defined by equations (H8), (H9), and
(H10), the Array Smoother and State Only Smoother can be derived by the proper
substitutions as follows:

The information array, corresponding to the general form of the state equa-
tions, that is transformed in the SRIS algorithm is given in reference 4, section X.2,
equation 2.7 and is repeated here as

ftl~w~ + f.(jw.'.w(j)j 1W, 1

\ R *,(tj +,)C R; t +It (tj +,)/
The data equation sived for smoothing in the general case based on reference 4,

section VI.2, equation 2.29 is given by

•p()wj + = ,(j)Ax +- = 1- (2)

The corresponding data equation saved for smoothing in the MSF/S propagation step
is given by

P(OApR + PP(t,)Apj+, + A,(tj)Azj~ l + AP.(tJ)AyN !'P' -9p, (13)

From the state equatiuns it follows that

Apj+1 = MAR, + wj or Apj = M"Apj, I - M"wj (14)

Substituting for AA) in equation (13) above gives

-- •p(tj)M-'wj + (Rp(tj)M"' + Rpp(tj))Apj+j + Ap,(tj)Arj+i + Rpy(tj)AyN = Ipj - 9 p (15)

Comparing terms between equations (15) and (12) gives

AW(j) = -Rp(tj)M' (16)

iwx(J) = (AP(tj)M'-+ •pA(t,) ApX(tj) ,py(tj)) (M7)

Therefore

/A.(J) +AWz(j)G = - _Ap(tj)M' + AP(tj)M' + Rpp(tj) = .pp(tj) (18)

A.'(p)tj = (AP(tj) + A•P(tj)M + #pz(tj)Vp, AP'(tj) APY(tj)) (19)

I4 = Zp, (110)
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Also

R;t~)RP"(tj+i) R;Y(Lj+l) () I Ro (Il+)1/aR(ti+)G = 0 R'(tj+1) R,(tj+1) ( 0 0

0 K : R(tj +,) 0 0 )1

l+l)Mt+ R;.(tj+,) R)y(tj+i)a !0 0

0 a R.( t, * ) 0 0 1 1 2

R;(tj+I)M + eR*ltj+I)Vp, a;,(tj 1) Ra,(t,+) ()
= ,(tj + 1)v. VP)R (t + 1) eb,(tj + )

0 0 R;(tj,) /+

and (113) 1

=lt + )Z;(tj + ) (13

zyj+ 1)/

Substituting equations (18) through (113) into equation (I1) gives the smoothing
array for the MSF/S implementation as

y R;(tj+,) R;(tj+1)M + e;,(tj+,)Vp, R•(tj+1) Re,-(tj+) z;(tj+ 1) (114)

0 Ra(tj, )Vp, ir(tj, +) R,(tj+,) zz(tj+,))

W (ti,a) z;"( tj,

Also R;(ty) = fy(tv) and z;(tj) = ly(tN) for all i = 0, 1, .... N where ky(tN) is upper
triangular. These last NY rows are therefore not carried in the smoothing compu-
tations. The matrices Rp(tj), R;(tj+ 1), and R,(tj+ 1) are always upper triangular. The
Householder transformation, Tp,,,, operating on this matrix eliminates AA + 1. from
the last Np + N, + NY rows.

The State Only Smoother algorithm corresponding to the general form of the
state equations is given in reference 4, section X.2, equations (2.1) and (2.2) and is
repeated he,.-: as

= -(115)

=z; [., . iwx J = N-I, N-2,...,0 (116)
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Solving equation (13) for Ag&,by setting 9p, = 0 gives

Apb" = [Rp(tj)]'[[J,- R•(A - R•,(ti)Ax;,i - f,(tj)Ayjv] (I17)

This is the same as equation (114) in the STATE ONLY SMOOTHER subsection of the
SMOOTHER ALGORITHMS section. To derive equation (115) substitute the

partitioned definitions of Ax, C, and G into the second part of equation (116) to get

( Apo o 0 \ & D/sl

(Ar ) =- 1 0A*0(118)

Extracting out the portion of equation (118) involving Axzjgives
AX; = - Vp m',(Apj*+ I w + AX;'+ 1 (119)

From the state equations

AK÷ I = MA '+ w,' or w; = AKg+ I- MA" 020)

SubsLituting w,*into equation (119) then gives

Ax; = -VpjM"(MAp;)+Ax;+ 1  (121)

This is the same as equation (115). Therefore equations (115), (117), and (121) give
the State Only Smoother algorithm in the MSF/S system.

The SRIS algorithm is mathematically equivalent to the standard Rauch-
Tung-Striebel (RTS) smoothing algorithm. Assume a set of state equations of the
general form given by equation (H7). Then this equivalence can be shown by proper
manipulation of the smoother informat4on arrays as follows:

The RTS smoother equations are given by

Ax; = Axs+C(Axj'+i-4xj+d) (122)

P* = ýs+Cj(P*+'-PJ+')Cj" (123)

where C= P-(124)

The SRIS equations are given by

k( (I) + rk,,w r. Az(I),tj I4(1) NRý 1(J) RL,~(j) zw1~j
V (125)

R;+ IG Rj'+, 4 z;+,1  0 Ri V
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Partition T* as follows:

N, N,

'T; 1  Tj 2  N
T* = (126)Y • T2/ } N=

Using these djinitions it follows that

0 = T 1(Rw(j)+1.xAj)G) +T; 2R;+IC (127)

R = = T2*1k.,Q)•j + T22R;+ ,41 (128)

Post-multiplying equation (128) by tjG gives
R4jG = T- 1FAw1(j)G +T' 2 Rj'+ G (129)

Subtracting equation (127) from equation (129) gives

R4ý!G = -T;zw(I) or T 1j = -R4ijC iw(j) (130)

Post-multiplying equation (128) by ýj'and substituting for T21 from equation (130)
gives

'11 - 4 ( 1 3 1

Rj;4 - - Rj4pj.G ()R.() + T 2R+ (31)

Solving this for Ti 2 gives
T 2  -- R;'jI+ (l-t)-Rw 1(j)) R;.+ (132)

In reference 4, section X.A it is shown from the propagation equations that

ýj(1"Ck=(Ow.(j)) = P=jPj+ = Cj (133)

Therefore

T22  = j-.jj+z (134)

Since ris orthogonal it follows that

T 1IT* + T72T 22 =I (135)

Substituting for T 1j and T*2 from equations (130) and (134) gives

--;G Rifw,(j) Ar(I) GTd4R+ Rcj R-;+1+ R* +CJ RII (136)

Pre-multiplying by RW and post-multiplying by R and replacing

.- I *,T If. j.
R ,Q) Rw(j) by Qj, R. +,R +I by Pj, , and " .R by Pj'gives

G 4jG QOj C.rT j + C.Pj+ I Cj (137)
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In reference 4, section X.A it is also shown that
-! r- -r T -- I

*cbGQ40G= -:P-Pi 1bP, j + j (138)

Using the second part of equation (133) in equation (138) gives

CWGQ Gt T4 = Pi - CAtP.j (139)
= PJ-CjPJ+1CJ

Substituting equation (139) into equation (137) gives

Pj = Pi-CPi+I C"+IC Pi+ C' (140)

Rearranging terms then gives

P• = P+ Cj(Pcf+I-Pi )Ci (141)

which is the same as equation (123) above.

Also the definitions in equations (125) and (126) give

zj = T2iY(j)+T"T2z.7+ 1  (142)

Substituting for T21 and T2 from equations (130) and (134) give

z= R;j 4jG R,,(j)!,,4(i) + R;Cj R-" I zj+1 (143)

Pre-multiplying by R; and substituting Arx= R'"z" gives

- 4 Rw(i)() + CjAxz+, (144)

In reference 4, section X.A it is also shown that

R,,,C Q().,(1) W =A- CiA x + i (145)

Substituting this into equation (144) then gives

Ax• = dxj,+Ci(Ax*+1-i-x+,) (146)

which is the same as equation (122) above.
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APPENDIX J

INVERSION OF UPPER TRIANGULAR MATRICES
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Let U be a nonsingular upper triangular matrix of dimension n X n to be
inverted In the MSF/S implementation, the lower triangular matrix L = U-r is
actually computed to take maximum advantage of existing array storage space. Let
uij c U and •e, L, then L is computed as follows:

Define

?,I = Iu,*, (Jl)

For each subsequent row j from 1 = 2, ... , n define

jj= 1/ujj (J'2)

. -- - iUij k 1...,j-1 (J3)
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